Abstract

The goal of our project is to observe the distribution of steady and moving colloidal polystyrene particles within a micro-optofluidic canal system. To this end, we apply a classical in-line holographic setup with a magnifying telescope and a digital camera sensor. The capabilities of numerical hologram reconstruction and the subsequent image processing offer new possibilities concerning the digital hologram analysis. We demonstrate new concepts for a four-dimensional particle flow observation using a captured holographic video as well as the potentials for information extraction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
    [CrossRef]
  2. M. Kanka, H. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett.  34, 1162–1164 (2009).
    [CrossRef] [PubMed]
  3. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.  45, 836–850 (2006).
    [CrossRef] [PubMed]
  4. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
    [CrossRef]
  5. W. Xu, M. H. Jericho, and H. J. Kreuzer, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.  28, 164–166 (2003).
    [CrossRef] [PubMed]
  6. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express  17, 13071–13079 (2009).
    [CrossRef] [PubMed]
  7. T. A. Ooms, R. Lindken, and J. Westerweel, “Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer,” Exp. Fluids  47, 941–955 (2009).
    [CrossRef]
  8. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.  45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  9. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt.  44, 7697–7708 (2005).
    [CrossRef] [PubMed]
  10. X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
    [CrossRef]
  11. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2004).
    [CrossRef]
  12. T. Meinecke, N. Sabitov, and S. Sinzinger, “Particle detection in microfluidic systems,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), P57.
  13. N. Sabitov, T. Meinecke, and S. Sinzinger, “Optimized image reconstruction in digital holography,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), B30.
  14. S. R. Deans, “Hough transform from the Radon transform,” IEEE Trans. Pattern Anal. Machine Intell.  PAMI-3, 185–188 (1981).
    [CrossRef]
  15. P. Langehanenberg, B. Kemper, and G. von Bally, “Autofocus algorithm for digital-holographic microscopy,” Proc. SPIE  6633, 66330E (2007).
    [CrossRef]
  16. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express  14, 5895–5908 (2006).
    [CrossRef] [PubMed]
  17. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital-holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.  47 , D176–D182 (2008).
    [CrossRef] [PubMed]

2009 (3)

2008 (2)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital-holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.  47 , D176–D182 (2008).
[CrossRef] [PubMed]

2007 (1)

P. Langehanenberg, B. Kemper, and G. von Bally, “Autofocus algorithm for digital-holographic microscopy,” Proc. SPIE  6633, 66330E (2007).
[CrossRef]

2006 (4)

2005 (1)

2003 (2)

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

W. Xu, M. H. Jericho, and H. J. Kreuzer, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.  28, 164–166 (2003).
[CrossRef] [PubMed]

1981 (1)

S. R. Deans, “Hough transform from the Radon transform,” IEEE Trans. Pattern Anal. Machine Intell.  PAMI-3, 185–188 (1981).
[CrossRef]

Amato-Grill, J.

Callens, N.

Cheong, F. C.

Deans, S. R.

S. R. Deans, “Hough transform from the Radon transform,” IEEE Trans. Pattern Anal. Machine Intell.  PAMI-3, 185–188 (1981).
[CrossRef]

Dirksen, D.

Dixon, L.

Dreyfus, R.

Dubois, F.

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.  45, 836–850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
[CrossRef]

Grier, D. G.

Hu, X. H.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.  45, 836–850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
[CrossRef]

W. Xu, M. H. Jericho, and H. J. Kreuzer, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.  28, 164–166 (2003).
[CrossRef] [PubMed]

Jericho, S. K.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.  45, 836–850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
[CrossRef]

Kanka, M.

Katz, J.

Kemper, B.

Klages, P.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2004).
[CrossRef]

Kreuzer, H. J.

Langehanenberg, P.

Lindken, R.

T. A. Ooms, R. Lindken, and J. Westerweel, “Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer,” Exp. Fluids  47, 941–955 (2009).
[CrossRef]

Lu, J. Q.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Malkiel, E.

Meinecke, T.

N. Sabitov, T. Meinecke, and S. Sinzinger, “Optimized image reconstruction in digital holography,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), B30.

T. Meinecke, N. Sabitov, and S. Sinzinger, “Particle detection in microfluidic systems,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), P57.

Meng, H.

Ooms, T. A.

T. A. Ooms, R. Lindken, and J. Westerweel, “Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer,” Exp. Fluids  47, 941–955 (2009).
[CrossRef]

Pu, Y.

Riesenberg, H.

Sabitov, N.

T. Meinecke, N. Sabitov, and S. Sinzinger, “Particle detection in microfluidic systems,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), P57.

N. Sabitov, T. Meinecke, and S. Sinzinger, “Optimized image reconstruction in digital holography,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), B30.

Schockaert, C.

Scott-Brock, R.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Sheng, J.

Sinzinger, S.

T. Meinecke, N. Sabitov, and S. Sinzinger, “Particle detection in microfluidic systems,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), P57.

N. Sabitov, T. Meinecke, and S. Sinzinger, “Optimized image reconstruction in digital holography,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), B30.

Sun, B.

von Bally, G.

Westerweel, J.

T. A. Ooms, R. Lindken, and J. Westerweel, “Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer,” Exp. Fluids  47, 941–955 (2009).
[CrossRef]

Xiao, K.

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.  45, 836–850 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, and H. J. Kreuzer, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.  28, 164–166 (2003).
[CrossRef] [PubMed]

Yan, P.

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Yourassowsky, C.

Appl. Opt. (4)

Exp. Fluids (1)

T. A. Ooms, R. Lindken, and J. Westerweel, “Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer,” Exp. Fluids  47, 941–955 (2009).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell. (1)

S. R. Deans, “Hough transform from the Radon transform,” IEEE Trans. Pattern Anal. Machine Intell.  PAMI-3, 185–188 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optik (Jena) (1)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Jena)  119, 419–423 (2008).
[CrossRef]

Phys. Med. Biol. (1)

X. Ma, J. Q. Lu, R. Scott-Brock, K. M. Jacobs, P. Yan, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370–1610 nm,” Phys. Med. Biol.  48, 4165–4172 (2003).
[CrossRef]

Proc. SPIE (1)

P. Langehanenberg, B. Kemper, and G. von Bally, “Autofocus algorithm for digital-holographic microscopy,” Proc. SPIE  6633, 66330E (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum.  77, 043706 (2006).
[CrossRef]

Other (3)

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2004).
[CrossRef]

T. Meinecke, N. Sabitov, and S. Sinzinger, “Particle detection in microfluidic systems,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), P57.

N. Sabitov, T. Meinecke, and S. Sinzinger, “Optimized image reconstruction in digital holography,” in Deutsche Gesellschaft für angewandte Optik Proceedings, 110th Conference of the DGaO (Deutsche Gesellschaft für angewandte Optik, 2009), B30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic holographic setup including the microfluidic channel with the particle flow.

Fig. 2
Fig. 2

Captured hologram (a) before and (b) after high-pass filtering. Illumination irregularities and low-frequency structures are eliminated efficiently.

Fig. 3
Fig. 3

Real part of the impulse response functions at distances of (a)  z 1 = 180 μm , (b)  z 2 = 300 μm , and (c) parameterized impulse response function (PIRF) developed at a distance range from z 1 = 180 μm up to z 2 = 300 μm . To fulfill the sampling theorem, all the impulse response functions are smoothly faded down (outer gray areas).

Fig. 4
Fig. 4

(a) Hologram reconstructed by PIRF between 180 and 300 μm , with (b) the corresponding depth scale and (c) the weighted angular distribution.

Fig. 5
Fig. 5

Dependence of some parameters on the reconstruction distance.

Fig. 6
Fig. 6

Standard deviations at frame counts versus reconstructed depth. The term “Skip” indicates the number of skipped frames; “Num” stands for the amount of added frames.

Fig. 7
Fig. 7

Comparison of (a) a composite additive versus (b) subtractive hologram composed of eight holoframes.

Fig. 8
Fig. 8

Particle flow at the microchannel’s bottom at different time bases composed of eight holoframes.

Fig. 9
Fig. 9

Image processing based on time-base presentations of Fig. 8.

Fig. 10
Fig. 10

(a) Lateral, e.g., x y plane along z and (b) axial, e.g., x y plane along y local extreme and (c) combining maps for an additive composite hologram.

Fig. 11
Fig. 11

x y plane of a subtractive composite hologram (a) before and (b) after 1D low-pass filtering.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δ z = 1.77 λ NA min 2 ,
δ r = λ 2 NA min ,
E R ( x , y , z ) = + + E H ( x 0 , y 0 ) 1 r exp [ i 2 π λ r ] cos δ d x d y ,
g ( x , y ) = 1 i λ exp [ i 2 π λ z 2 + ( x x 0 ) 2 + ( y y 0 ) 2 ] z 2 + ( x x 0 ) 2 + ( y y 0 ) 2 ,
σ ( z ) = 1 K · L 1 n = 1 L · K ( I ( n , z ) I ¯ ( z ) ) ,
I Σ = n = 1 N I n ,
I Δ = I 1 ( I 2 ( I 3 ( I N 1 I N ) ) ) ; N = 2 k ; k N .
I Δ = I 1 I 2 + I 3 I 4 + I 5 + I N 1 I N = n = 1 N = 2 k ( 1 ) n + 1 I n ,
Δ p β ( N 1 ) Δ t v M Δ p β Δ t ,

Metrics