Abstract

Using a ceramic thermoelectric heater, we show highly reproducible fabrication of single-mode sub wavelength silica tapers with an ultralow loss level. The reproducibility of the process is studied statistically, leading to an average taper transmission of 94%. The best tapers have a transmission superior to 99%, above the level commonly reached by other fabrication methods. The taper profile is inspected along its length and closely follows the exponential profile predicted by the model of Birks and Li. This high degree of control over the taper shape allows a detailed analysis of the transition to the single-mode regime during tapering. As an application of this fabrication method, we present a microlooped taper probe for evanescent coupling experiments requiring fine spatial selectivity.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
    [CrossRef]
  2. L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.  25, 1415–1417 (2000).
    [CrossRef]
  4. J. C. Knight, G. Cheung, F. Jacques, and T. Birks, “Phase-matched excitation of whispering gallery mode resonances by a fiber taper,” Opt. Lett.  22, 1129–1131 (1997).
    [CrossRef] [PubMed]
  5. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering gallery modes by use of a symmetrical dual coupling configuration,” Opt. Lett.  25, 260–262 (2000).
    [CrossRef]
  6. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
    [CrossRef]
  7. I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
    [CrossRef]
  8. C. Grillet, C. Monat, C. L. C. Smith, B. Eggleton, D. J. Moss, S. Frederick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, “Nanowire coupling to photonic crystal nanocavities for single photon sources,” Opt. Express  15, 1267–1276 (2007).
    [CrossRef] [PubMed]
  9. L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
    [CrossRef] [PubMed]
  10. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express  12, 2258–2263(2004).
    [CrossRef] [PubMed]
  11. F. Orucevic, V. Lefevre-Seguin, and J. Hare, “Transmittance and near field characterization of sub-wavelength tapered optical fibers,” Opt. Express  15, 13624–13629(2007).
    [CrossRef] [PubMed]
  12. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber taper probe for wafer scale microphotonics device characterization,” Opt. Express  15, 4745–4752(2007).
    [CrossRef] [PubMed]
  13. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express  12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  14. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
    [CrossRef]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
    [CrossRef]
  16. Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992).
    [CrossRef]
  17. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol.  10, 432–438 (1992).
    [CrossRef]
  18. J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
    [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  21. http://en.wikipedia.org/wiki/Gabor_transform
  22. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech.  17, 1130–1138 (1969).
    [CrossRef]
  23. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express  12, 3521–3531 (2004).
    [CrossRef] [PubMed]

2007 (3)

2006 (1)

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
[CrossRef]

2005 (2)

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

2004 (4)

2003 (1)

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

2002 (1)

J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
[CrossRef]

2000 (2)

1997 (1)

1992 (3)

L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol.  10, 432–438 (1992).
[CrossRef]

1989 (1)

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

1969 (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech.  17, 1130–1138 (1969).
[CrossRef]

Aers, G.

Ashcom, J. B.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
[CrossRef]

Birks, T.

Birks, T. A.

Black, R. J.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

Bobb, L. C.

L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).

Borselli, M.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber taper probe for wafer scale microphotonics device characterization,” Opt. Express  15, 4745–4752(2007).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
[CrossRef]

Brambilla, G.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express  12, 2258–2263(2004).
[CrossRef] [PubMed]

Bures, J.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

Cai, M.

Cheung, G.

Chrystal, C.

Dalacu, D.

Daxhelet, X.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

Dulashko, Y.

Eggleton, B.

Feng, X.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

Finazzi, V.

Frederick, S.

Gattas, R. R.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Gonthier, F.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

Grillet, C.

Hale, A.

Hare, J.

He, S.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Hwang, I. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Jacques, F.

Johnson, T. J.

Kim, S. H.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Kim, S. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

Kurkjian, C. R.

J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
[CrossRef]

Lacroix, S.

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

Lapointe, J.

Lee, S. H.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Lee, Y. H.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Lefevre-Seguin, V.

Leon-Saval, S. G.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol.  10, 432–438 (1992).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Mason, M. W.

Matthewson, M. J.

J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Michael, C. P.

Monat, C.

Moss, D. J.

Mrotek, J. L.

J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
[CrossRef]

Noda, J.

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992).
[CrossRef]

Orucevic, F.

Painter, O.

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber taper probe for wafer scale microphotonics device characterization,” Opt. Express  15, 4745–4752(2007).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
[CrossRef]

Poole, P. J.

Richardson, D. J.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express  12, 2258–2263(2004).
[CrossRef] [PubMed]

Russell, P. St. J.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Shankar, P. M.

L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).

Shen, M.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Smith, C. L. C.

Snyder, A. W.

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech.  17, 1130–1138 (1969).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
[CrossRef]

Sumetsky, M.

Takeuchi, Y.

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Tong, L.

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Vahala, K.

Wadsworth, W. J.

Williams, R. L.

Xu, F.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
[CrossRef]

Yang, J. K.

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

F. Gonthier, S. Lacroix, X. Daxhelet, R. J. Black, and J. Bures, “Broad-band all-fiber filters for wavelength division multiplexing application,” Appl. Phys. Lett.  54, 1290–1292 (1989).
[CrossRef]

I. K. Hwang, S. K. Kim, J. K. Yang, S. H. Kim, S. H. Lee, and Y. H. Lee, “Curved microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.  87, 131107 (2005).
[CrossRef]

Electron. Lett. (2)

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.  42, 517–519 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett.  41, 400–402 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol.  10, 432–438 (1992).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photonics Technol. Lett.  4, 465–467 (1992).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microwave Theory Tech.  17, 1130–1138 (1969).
[CrossRef]

J. Non-Cryst. Solids (1)

J. L. Mrotek, M. J. Matthewson, and C. R. Kurkjian, “The fatigue of high strength fused silica optical fibers in low humidity,” J. Non-Cryst. Solids  297, 91–95 (2002).
[CrossRef]

Microwave J. (1)

L. C. Bobb and P. M. Shankar, “Tapered optical fiber components and sensors,” Microwave J.  35, 218 (1992).

Nature (1)

L. Tong, R. R. Gattas, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub-wavelength diameter silica wires for low-loss optical wave guiding,” Nature  426, 816–819(2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. B (1)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical fiber based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B  70, 081306 (2004).
[CrossRef]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

http://en.wikipedia.org/wiki/Gabor_transform

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microheater taper fabrication. (a) Schematic view of the set-up for fiber-taper fabrication. μH is the thermoelectric microheater providing a stable hot zone. TS 1,2 are motorized linear translation stages. PD is the photodetector. (b) Zoom-in picture of the microheater with the fiber positioned in the cavity.

Fig. 2
Fig. 2

Taper profile. (a) Schematic profile of a symmetric fiber taper formed in a constant hot zone, where the total taper length is 2 z 0 + L 0 . z o is the length of the tapering transition and L 0 is the length of the taper waist (also the hot-zone size here). (b) Measured profile of a typical fiber taper fabricated using the microheater. Here, the taper waist diameter is 0.9 μm .

Fig. 3
Fig. 3

Reproducible ultralow loss level. Statistic histogram of fiber taper transmission out of 80 samples.

Fig. 4
Fig. 4

Transition to single-mode operation. Upper panel: recorded fiber-taper transmission as a function of the elongation length. Lower panel: Gabor transform of the recorded transmission. Dashed lines are given by our model.

Fig. 5
Fig. 5

Microlooped taper. (a) Multitwisted looped taper structure. (b) Tensioned single-loop taper. (c) Transmission spectrum of a single-loop taper.

Tables (1)

Tables Icon

Table 1 Transmission Decay of Fiber-Taper Transmission (in Units of Percent/Hour) with Respect to the Relative Humidity of the Environment at 25 ° C

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r ( z ) = | r 0 exp ( z z 0 L 0 / 2 L 0 ) z 0 L 0 / 2 z L 0 / 2 r w = r 0 exp ( z 0 L 0 ) L 0 / 2 z L 0 / 2 r 0 exp ( z z 0 L 0 / 2 L 0 ) L 0 / 2 z z 0 + L 0 / 2 ,
| β ( r ) = [ ( 2 π λ ) 2 n co 2 ( U ( r ) r ) 2 ] 1 / 2 U ( r ) = U ( ) × exp ( λ r 2 π NA ) ,
Φ k ( 2 z 0 ) = β k ( r w ) L 0 + 2 0 z 0 β k ( r ( z ) ) d z ,

Metrics