Abstract

The coupling length of a directional coupler is strongly polarization dependent, especially for use in wave guide tap monitoring applications. To avoid severe polarization and maximize the wavelength flatness of optical waveguide taps, a 12μm thick silicon-on-insulator (SOI) platform and Mach–Zehnder directional couplers implemented with the bending effect illustrated low coupling loss to a SMF-28 fiber, low polarization dependence, and insensitive wavelength on the tap port for monitoring applications. Our results demonstrated that the optical waveguide tap, which carries a portion of the light signal, showed a 0.077 coupling ratio and 0.2dB for the polarization-dependent loss. The wavelength variation for the coupling ratio was less than 4% across the entire C-band. A 0.26dB per interface coupling loss was also achieved between the 12μm thick SOI waveguide and the SMF-28 fiber.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
    [CrossRef]
  2. S. H. Hsu, “Polarization-dependent loss compensation on silicon-wire waveguide tap by complex refractive index of metals,” Opt. Lett.  34, 1798–1800 (2009).
    [CrossRef] [PubMed]
  3. G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
    [CrossRef]
  4. A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap. 13.
  5. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
    [CrossRef]
  6. B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett.  9, 1607–1609 (1997).
    [CrossRef]
  7. Y. P. Li and C. H. Henry, “Silica-based optical integrated circuits,” in IEE Proceedings in Optoelectronics (Institution of Engineering and Technology, 1996), Vol.  143, pp. 263–280.
    [CrossRef]
  8. S. H. Hsu, “A 5 μm thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber,” IEEE Photonics Technol. Lett.  20, 1003–1005 (2008).
    [CrossRef]
  9. S.-H. Hsu and Y.-L. Tsai, “Tapping signal power on 12 μm thick SOI optical waveguide for performance monitoring,” Electron. Lett.  45, 161–163 (2009).
    [CrossRef]

2009

S.-H. Hsu and Y.-L. Tsai, “Tapping signal power on 12 μm thick SOI optical waveguide for performance monitoring,” Electron. Lett.  45, 161–163 (2009).
[CrossRef]

S. H. Hsu, “Polarization-dependent loss compensation on silicon-wire waveguide tap by complex refractive index of metals,” Opt. Lett.  34, 1798–1800 (2009).
[CrossRef] [PubMed]

2008

S. H. Hsu, “A 5 μm thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber,” IEEE Photonics Technol. Lett.  20, 1003–1005 (2008).
[CrossRef]

2007

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

2005

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

1997

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett.  9, 1607–1609 (1997).
[CrossRef]

1990

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

Al Sayeed, C. A.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

Cao, G. B.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

Gao, F.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

Henry, C. H.

Y. P. Li and C. H. Henry, “Silica-based optical integrated circuits,” in IEE Proceedings in Optoelectronics (Institution of Engineering and Technology, 1996), Vol.  143, pp. 263–280.
[CrossRef]

Hsu, S. H.

S. H. Hsu, “Polarization-dependent loss compensation on silicon-wire waveguide tap by complex refractive index of metals,” Opt. Lett.  34, 1798–1800 (2009).
[CrossRef] [PubMed]

S. H. Hsu, “A 5 μm thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber,” IEEE Photonics Technol. Lett.  20, 1003–1005 (2008).
[CrossRef]

Hsu, S.-H.

S.-H. Hsu and Y.-L. Tsai, “Tapping signal power on 12 μm thick SOI optical waveguide for performance monitoring,” Electron. Lett.  45, 161–163 (2009).
[CrossRef]

Hua, Heng

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

Jiang, J.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

Jinguji, K.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

Kawachi, M.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

Li, Y. P.

Y. P. Li and C. H. Henry, “Silica-based optical integrated circuits,” in IEE Proceedings in Optoelectronics (Institution of Engineering and Technology, 1996), Vol.  143, pp. 263–280.
[CrossRef]

Little, B. E.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett.  9, 1607–1609 (1997).
[CrossRef]

Murphy, T.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett.  9, 1607–1609 (1997).
[CrossRef]

Sugita, A.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

Takato, N.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

Tsai, Y.-L.

S.-H. Hsu and Y.-L. Tsai, “Tapping signal power on 12 μm thick SOI optical waveguide for performance monitoring,” Electron. Lett.  45, 161–163 (2009).
[CrossRef]

Vukovic, A.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

Yang, O. W. W.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap. 13.

Yeh, P.

A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap. 13.

Zhang, F.

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

Electron. Lett.

K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electron. Lett.  26, 1326–1327 (1990).
[CrossRef]

S.-H. Hsu and Y.-L. Tsai, “Tapping signal power on 12 μm thick SOI optical waveguide for performance monitoring,” Electron. Lett.  45, 161–163 (2009).
[CrossRef]

IEEE Photonics Technol. Lett.

S. H. Hsu, “A 5 μm thick SOI waveguide with low birefringence and low roughness and optical interconnection using high numerical aperture fiber,” IEEE Photonics Technol. Lett.  20, 1003–1005 (2008).
[CrossRef]

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett.  9, 1607–1609 (1997).
[CrossRef]

G. B. Cao, F. Gao, J. Jiang, and F. Zhang, “Directional couplers realized on silicon-on-insulator,” IEEE Photonics Technol. Lett.  17, 1671–1673 (2005).
[CrossRef]

IET Optoelectron.

C. A. Al Sayeed, A. Vukovic, O. W. W. Yang, and Heng Hua, “Low-loss reconfigurable OADM for metro core optical network,” IET Optoelectron.  1, 178–184 (2007).
[CrossRef]

Opt. Lett.

Other

A. Yariv and P. Yeh, Photonics—Optical Electronics in Modern Communications, 6th ed. (Oxford U. Press, 2007), Chap. 13.

Y. P. Li and C. H. Henry, “Silica-based optical integrated circuits,” in IEE Proceedings in Optoelectronics (Institution of Engineering and Technology, 1996), Vol.  143, pp. 263–280.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Waveguide tap structures implemented with bending effects. (Insets: SEM picture for the input and coupled bend region of MZDC).

Fig. 2
Fig. 2

Coupling length and its detuning versus waveguide separation in the DC at different polarization states for 5 and 12 μm thick SOI waveguides.

Fig. 3
Fig. 3

Calculated phenomenological constants of DC on the SOI waveguide with 12 μm thickness, 6 μm width, and 6.8 μm etch depth.

Fig. 4
Fig. 4

(a)  12 μm thick SOI waveguide mode with a width of 6 μm and etch depth of 6.6 μm . (b)  12 μm thick SOI waveguide mode with a width of 12 μm and etch depth of 6.6 μm . (c) SM-28 fiber mode.

Fig. 5
Fig. 5

MZDC waveguide tap simulated at different etch depths (6.6, 6.8, and 7 μm ) across the C-band for (a) the tap port power and PDL, and (b) primary port power and tap port ratio.

Fig. 6
Fig. 6

Schematic of the test setup.

Fig. 7
Fig. 7

Transmittance characteristics for MZDC waveguide tap on (a) tap port power and PDL and (b) primary port power and tap port ratio.

Fig. 8
Fig. 8

Bend effect comparison in the MZDC for the tap port ratio and PDL across the C-band.

Fig. 9
Fig. 9

Tap port ratio and PDL comparison among theoretic calculations from Eq. (1), the numerical simulation with BeamPROP, and the optical measurement.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

S = P 2 ( z ) P in = cos 2 θ sin 2 ( ϕ I + ϕ II ) + sin 2 θ sin 2 ( ϕ I ϕ II ) ,
θ = β ( λ ) Δ L 2 ,
ϕ i = π 2 L C d z ,
L C L 0 e d D 0 ,
L C = λ 2 ( n S n a ) ,
d ( z ) = R ( 1 cos α ) + d 0 = + d 0 + R R 2 ( z L 2 ) 2 ,
cos α = 1 ( z L 2 R ) 2 = [ R 2 ( z L 2 ) 2 R 2 ] 1 2 ,
Λ = z L 2 ,
L C ( d 0 ) L 0 e d 0 D 0 ,
ϕ 6 = L 2 π 2 L C ( z ) d z π 2 L 0 e d 0 D 0 L 2 e 1 D 0 [ R R 2 ( z L 2 ) 2 ] d z = π 2 L 0 e d 0 D 0 0 e 1 D 0 [ R R 2 Λ 2 ] d Λ π 2 L 0 e d 0 D 0 0 e 1 D 0 [ 1 2 Λ 2 R ] d Λ = π 2 L 0 e d 0 D 0 0 e Λ 2 2 D 0 R d Λ = π 2 L 0 e d 0 D 0 π 2 2 D 0 R = π 2 L C ( d 0 ) π D 0 R 2 = ϕ 3
ϕ 4 = L 1 π 2 L C ( z ) d z π 2 L 0 e d 0 D 0 L 1 e 2 D 0 [ R R 2 ( z L 1 ) 2 ] d z = π 2 L C ( d 0 ) π D 0 R 2 = ϕ 5 ,
ϕ 1 π L 1 2 L 0 e d 0 D 0 = π 2 L C ( d 0 ) L 1 ,
ϕ 2 π L 2 2 L 0 e d 0 D 0 = π 2 L C ( d 0 ) L 2 ,
ϕ I = ϕ 1 + ϕ 3 + ϕ 4 π 2 L C ( d 0 ) ( L 1 + π D 0 R 2 + π D 0 R 2 ) ,
ϕ II = ϕ 2 + ϕ 5 + ϕ 6 π 2 L C ( d 0 ) ( L 2 + π D 0 R 2 + π D 0 R 2 ) .
ϕ I = a ( 1 + 1 N ) ( 1 + δ ) , ϕ II = a ( 1 1 N ) ( 1 + δ ) ,
cos 2 θ = sin ( 4 a N ) N sin ( 4 a ) + sin ( 4 a N ) .
S = sin ( 4 a N ) sin ( 4 a N ) N sin ( 4 a ) sin 2 ( 2 a ) + N sin ( 4 a ) sin ( 4 a N ) N sin ( 4 a ) sin 2 ( 2 a N ) .
S a = 3 π 8 = 1 4 sin ( 3 π N ) N + sin ( 3 π 2 N ) + sin 2 ( 3 π 4 N ) .
ln ( 1 L C ) ln ( 1 L 0 ) d D 0 .

Metrics