Abstract

We used surface thermal lensing (STL) to measure the weak absorption of optical films. Different trends of STL phase signals were observed in films with two types of defect, i.e., absorptive defects and heat-resistant defects. Theoretical analysis was made, and it is in good agreement with the experimental results. Therefore, an enhanced STL technique is proposed to deduce both the magnitude of absorption and the type of defect in optical films, by considering signal intensity with its phase status.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt.  40, 1897–1906 (2001).
    [CrossRef]
  2. J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B  67, 633–639 (1998).
    [CrossRef]
  3. Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
    [CrossRef]
  4. B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
    [CrossRef]
  5. B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
    [CrossRef]
  6. S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).
  7. M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
    [CrossRef]
  8. S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurement in thin films,” J. Appl. Phys.  67, 1170–1182 (1990).
    [CrossRef]
  9. N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
    [CrossRef]
  10. L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
    [CrossRef]
  11. B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
    [CrossRef]

2008

B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
[CrossRef]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

2007

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

2005

B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
[CrossRef]

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

2001

1999

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

1998

J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B  67, 633–639 (1998).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

1990

S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurement in thin films,” J. Appl. Phys.  67, 1170–1182 (1990).
[CrossRef]

Andrade, A. A.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Astrath, N. G.

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

Astrath, N. G. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

Baesso, M. L.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Bento, A. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Bertussi, B.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Bonneau, F.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Bouchut, P.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Catunda, T.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Chen, X. X.

B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
[CrossRef]

Combis, P.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Commandre, M.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Dovichi, N. J.

S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurement in thin films,” J. Appl. Phys.  67, 1170–1182 (1990).
[CrossRef]

Fan, S. H.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Fan, Z. X.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Fang, J. W.

J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B  67, 633–639 (1998).
[CrossRef]

Gama, S.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Gong, Y.

B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
[CrossRef]

Han, Y.

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

He, H. B.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Hughes, J. D.

Li, B.

B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
[CrossRef]

Li, B. C.

B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
[CrossRef]

Malacarne, L. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

Mendes, R. S.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

Moncur, K.

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Natoli, J.-Y.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Nunes, L. A. O.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Pecoraro, E.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Pedreira, P. R. B.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

Rosenshein, J. S.

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Rullier, J.-L.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Sampaio, J. A.

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Sato, F.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

Shao, J. D.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Shen, J.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

Stolz, C. J.

Thomsen, M.

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Weakley, S. C.

Wu, S.

S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurement in thin films,” J. Appl. Phys.  67, 1170–1182 (1990).
[CrossRef]

Wu, Z. L.

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt.  40, 1897–1906 (2001).
[CrossRef]

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Xiong, S.

B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
[CrossRef]

Zhang, S. Y.

J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B  67, 633–639 (1998).
[CrossRef]

Zhang, Y.

B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
[CrossRef]

Zhao, Q.

Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt.  40, 1897–1906 (2001).
[CrossRef]

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Zhao, Y. A.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Acta Phys. Sin.

S. H. Fan, H. B. He, Z. X. Fan, J. D. Shao, and Y. A. Zhao, “Theory and experiment of surface thermal lens technique used in absorption measurement of thin films,” Acta Phys. Sin.  54, 5774–5777 (2005).

Appl. Opt.

Appl. Phys. B

J. W. Fang and S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B  67, 633–639 (1998).
[CrossRef]

B. Li, S. Xiong, and Y. Zhang, “Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation,” Appl. Phys. B  80, 527–534 (2005).
[CrossRef]

Appl. Phys. Lett.

N. G. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, “Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids,” Appl. Phys. Lett.  91, 191908 (2007).
[CrossRef]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett.  92, 131903 (2008).
[CrossRef]

J. Appl. Phys.

B. C. Li, X. X. Chen, and Y. Gong, “Analysis of surface thermal lens signal in optical coatings with top-hat beam excitation,” J. Appl. Phys.  103, 033518 (2008).
[CrossRef]

S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurement in thin films,” J. Appl. Phys.  67, 1170–1182 (1990).
[CrossRef]

Opt. Commun.

B. Bertussi, J.-Y. Natoli, M. Commandre, J.-L. Rullier, F. Bonneau, P. Combis, and P. Bouchut, “Photothermal investigation of the laser-induced modification of a single gold nano-particle in a silica film,” Opt. Commun.  254, 299–309 (2005).
[CrossRef]

Opt. Eng

Y. Han, Z. L. Wu, J. S. Rosenshein, M. Thomsen, Q. Zhao, and K. Moncur, “Pulsed photothermal deflection and diffraction effects: numerical modeling based on Fresnel diffraction theory,” Opt. Eng  38, 2122–2128 (1999).
[CrossRef]

Phys. Rev. B

M. L. Baesso, A. C. Bento, A. A. Andrade, J. A. Sampaio, E. Pecoraro, L. A. O. Nunes, T. Catunda, and S. Gama, “Absolute thermal lens method to determine fluorescence quantum efficiency and concentration quenching of solids,” Phys. Rev. B  57, 10545–10549 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics