Abstract

We designed a microwave (MW) photonics phase shifter, consisting of a Fabry–Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 02π could be achieved by a refractive index variation of 09.68×103 in an ultrawideband (about 38GHz1.9THz), and the corresponding tuning resolution was about 6.92°/°C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
    [CrossRef]
  2. X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
    [CrossRef]
  3. S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
    [CrossRef]
  4. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.  18, 208–210 (2006).
    [CrossRef]
  5. Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
    [CrossRef]
  6. S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett.  10, 233–235 (2000).
    [CrossRef]
  7. L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
    [CrossRef]
  8. H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
    [CrossRef]
  9. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.  29, 2749–2751 (2004).
    [CrossRef] [PubMed]
  10. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.  32, 533–535 (2007).
    [CrossRef] [PubMed]
  11. T. Kawanishi, H. Kiuchi, and M. Yamada, “Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulator for photonic local oscillators,” in Proceedings of the IEEE Conference on Microwave Photonics (IEEE, 2005), pp. 1–4.
  12. T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
    [CrossRef]
  13. H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
    [CrossRef]
  14. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol.  16, 1851–1853 (1998).
    [CrossRef]
  15. G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
    [CrossRef]
  16. M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express  14, 5266–5278(2006).
    [CrossRef] [PubMed]

2009 (1)

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

2007 (2)

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry–Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.  32, 533–535 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Iodice, G. Mazzi, and L. Sirleto, “Thermo-optical static and dynamic analysis of a digital optical switch based on amorphous silicon waveguide,” Opt. Express  14, 5266–5278(2006).
[CrossRef] [PubMed]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.  18, 208–210 (2006).
[CrossRef]

2005 (1)

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

2004 (1)

2003 (1)

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

2000 (2)

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
[CrossRef]

S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett.  10, 233–235 (2000).
[CrossRef]

1999 (2)

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

1998 (2)

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol.  16, 1851–1853 (1998).
[CrossRef]

1992 (1)

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
[CrossRef]

Kendall, P. C.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
[CrossRef]

An, D.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Baets, R.

Basile, P.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Benson, T. M.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
[CrossRef]

Bhattacharya, D. H.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Bienstman, P.

Bozeat, R. J.

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
[CrossRef]

Bui, L. A.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

Chang, C. Zhang

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Chang, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

Chang, Y.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Chen, M. Y.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Chen, R.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Chen, R. T.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Chio, T.-H.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

Chu, S. N. G.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
[CrossRef]

Chung, P. S.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

Dalton, W. H.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Della Carte, F. G.

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

Erlig, H.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Fetterman, L. R.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Filip, V.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

Fu, Z.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Ghorbani, K.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

Han, Z.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Howley, B.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Iodice, M.

Kawanishi, T.

T. Kawanishi, H. Kiuchi, and M. Yamada, “Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulator for photonic local oscillators,” in Proceedings of the IEEE Conference on Microwave Photonics (IEEE, 2005), pp. 1–4.

Kim, S. J.

S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett.  10, 233–235 (2000).
[CrossRef]

Kiuchi, H.

T. Kawanishi, H. Kiuchi, and M. Yamada, “Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulator for photonic local oscillators,” in Proceedings of the IEEE Conference on Microwave Photonics (IEEE, 2005), pp. 1–4.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.  18, 208–210 (2006).
[CrossRef]

Lee, S.-S.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Li, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.  18, 208–210 (2006).
[CrossRef]

Mazzi, G.

Mitchell, A.

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

Moustakas, T. D.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
[CrossRef]

Myung, N. H.

S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett.  10, 233–235 (2000).
[CrossRef]

Ng, H. M.

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
[CrossRef]

Pogossian, S. P.

Pruessner, M. W.

Qiu, M.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

Rabinovich, W. S.

Rendina, I.

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

Sarro, P. M.

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

Sirleto, L.

Steier, B.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Stievater, T. H.

Taillaert, D.

Tang, H. S.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Tsap, D.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Udupa, A. H.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Vescan, L.

Vonsovici, A.

Wang, X.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Wong, C. K.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

Wong, H.

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

Wu, L.

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

Yamada, M.

T. Kawanishi, H. Kiuchi, and M. Yamada, “Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulator for photonic local oscillators,” in Proceedings of the IEEE Conference on Microwave Photonics (IEEE, 2005), pp. 1–4.

Ye, T.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

Zhang, H.

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

Zhang, Z.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

Zhou, Q.

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett.  76, 2818–2820 (2000).
[CrossRef]

Electron. Lett. (1)

L. A. Bui, A. Mitchell, K. Ghorbani, and T.-H. Chio, “Wideband RF photonic vector sum phase-shifter,” Electron. Lett.  39, 536–537 (2003).
[CrossRef]

IEE Proc. Optoelectron. (1)

T. M. Benson, R. J. Bozeat, and P. C. Kendall, “Rigorous effective index method for semiconductor rib waveguides,” IEE Proc. Optoelectron.  139, 67–70 (1992).
[CrossRef]

IEEE Microw. Guided Wave Lett. (2)

S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett.  10, 233–235 (2000).
[CrossRef]

S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang Chang, D. H. Bhattacharya, D. Tsap, B. Steier, W. H. Dalton, and L. R. Fetterman, “Demonstration of a photonically controlled RF phase shifter,” IEEE Microw. Guided Wave Lett.  9, 357–359 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett.  18, 208–210 (2006).
[CrossRef]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, and T. Ye, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photon. Technol. Lett.  21, 60–62(2009).
[CrossRef]

J. Lightwave Technol. (1)

Microelect. Reliab. (1)

H. Wong, V. Filip, C. K. Wong, and P. S. Chung, “Silicon integrated photonics begins to revolutionize,” Microelect. Reliab.  47, 1–10 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

H. S. Tang, L. Wu, Z. Fu, D. An, Z. Han, and R. T. Chen, “Polymer-based optical waveguide circuits for photonic phased-array antennas,” Proc. SPIE  3632, 250–261 (1999).
[CrossRef]

X. Wang, B. Howley, M. Y. Chen, Q. Zhou, R. Chen, and P. Basile, “Polymer based thermo-optic switch for optical true time delay,” Proc. SPIE  5728, 60–67 (2005).
[CrossRef]

Sens. Actuators A (1)

G. Cocorullo, F. G. Della Carte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A  71, 19–26 (1998).
[CrossRef]

Other (1)

T. Kawanishi, H. Kiuchi, and M. Yamada, “Quadruple frequency double sideband carrier suppressed modulation using high extinction ratio optical modulator for photonic local oscillators,” in Proceedings of the IEEE Conference on Microwave Photonics (IEEE, 2005), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic of the device (not to scale). (b) Enlarged view of the FP filter. (c) Cross section of the SOI rib waveguide. (d) Optical profile of its TM 00 mode.

Fig. 2
Fig. 2

Reflectance spectra of the FP cavity and reflector.

Fig. 3
Fig. 3

Transmission spectrum of the FP filter and its high-reflectance region.

Fig. 4
Fig. 4

Phase shift as a function of RI variation (also of temperature variation) with different lengths of PMR.

Fig. 5
Fig. 5

This configuration always keeps the right sideband at the transmission peak and the left band in the high- reflectance region for different MW frequencies. With this method, the two sidebands can be fully separated. The carrier was tuned correspondingly, according to the wanted MW frequency.

Fig. 6
Fig. 6

Reflectance variation of the FP cavity induced by the fabrication tolerance of W si .

Fig. 7
Fig. 7

Reflectance variation of the reflector induced by the variation of W si .

Fig. 8
Fig. 8

Spectrum variation of the filter induced by the variation of W si and L c .

Fig. 9
Fig. 9

Steady state 2D temperature profile.

Fig. 10
Fig. 10

Horizontal 1D temperature profile in transverse direction (A-A direction of Fig. 9).

Fig. 11
Fig. 11

Vertical 1D temperature profile of the cross section of the rib waveguide (B-B direction of Fig. 9).

Fig. 12
Fig. 12

Temperature response at the center of the cross section of the rib waveguide (“O” point of Fig. 9).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = A exp [ j 2 π ( v c v rf ) t ] + B exp [ j 2 π ( v c + v rf ) t ] ,
E out ( t ) = A A exp { j [ 2 π ( v c v rf ) t + θ 2 ] } + B B exp { j [ 2 π ( v c + v rf ) t + θ 1 ] } .
i ( t ) = R 0 [ ( A A ) 2 + ( B B ) 2 + 2 A A B B cos [ 2 π × 2 v rf t ( θ 2 θ 1 ) ] ,
[ B C ] = m = 1 k [ cos δ m i · sin δ m / n e m ( λ ) i · n e m ( λ ) · sin δ m cos δ m ] [ 1 n e sub ( λ ) ] ,
Y = C B , R = n e inc ( λ ) Y n e inc ( λ ) + Y ,
t < r / 1 r 2 ,
T = 1 1 + [ 2 F π sin ( δ c ) ] 2 ,
θ T = 4 π λ 2 n L p ( 1 n d n d T + 1 L p d L p d T ) 4 π λ 2 n L p ( α n + β ) ,
v = c / λ 1 c / λ 2 ( λ 0 λ 1 ) . c / λ 1 λ 0 .
λ c = 1 / ( v / 2 c + 1 / λ 2 ) 1 / ( v / 2 c + 1 / λ 0 ) .
ρ c T / t = k 2 T + Q ( x , y , z , t ) ,

Metrics