Abstract

Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600nm and emitted above 700nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
    [CrossRef]
  2. J. C. Zwinkels, “Colour measuring instruments and their calibration,” Displays  16, 163–171 (1996).
    [CrossRef]
  3. A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta  380, 379–390 (1999).
    [CrossRef]
  4. A. Pons and J. Campos, “Spectrophotometric error in colour coordinates introduced by fluorescence of white calibration tile,” Color Res. Appl.  29, 111–114 (2004).
    [CrossRef]
  5. H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia  43, S36–S40 (2006).
    [CrossRef]
  6. F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
    [CrossRef]
  7. National Institute of Standards and Technology, “Report of calibration of spectral reflectance factor for diffuse reflectance standards test,” 844/265215-01 (NIST, 2001).

2006 (1)

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia  43, S36–S40 (2006).
[CrossRef]

2004 (2)

Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
[CrossRef]

A. Pons and J. Campos, “Spectrophotometric error in colour coordinates introduced by fluorescence of white calibration tile,” Color Res. Appl.  29, 111–114 (2004).
[CrossRef]

1999 (1)

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta  380, 379–390 (1999).
[CrossRef]

1997 (1)

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

1996 (1)

J. C. Zwinkels, “Colour measuring instruments and their calibration,” Displays  16, 163–171 (1996).
[CrossRef]

Campos, J.

A. Pons and J. Campos, “Spectrophotometric error in colour coordinates introduced by fluorescence of white calibration tile,” Color Res. Appl.  29, 111–114 (2004).
[CrossRef]

Chung, Y. S.

Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
[CrossRef]

Larkin, J. A.

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

Malkin, F.

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

Pons, A.

A. Pons and J. Campos, “Spectrophotometric error in colour coordinates introduced by fluorescence of white calibration tile,” Color Res. Appl.  29, 111–114 (2004).
[CrossRef]

Saito, I.

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia  43, S36–S40 (2006).
[CrossRef]

Shitomi, H.

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia  43, S36–S40 (2006).
[CrossRef]

Sin, K. M.

Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
[CrossRef]

Springsteen, A.

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta  380, 379–390 (1999).
[CrossRef]

Verrill, J. F.

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

Wardman, R. H.

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

Xin, J. H.

Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
[CrossRef]

Zwinkels, J. C.

J. C. Zwinkels, “Colour measuring instruments and their calibration,” Displays  16, 163–171 (1996).
[CrossRef]

Anal. Chim. Acta (1)

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta  380, 379–390 (1999).
[CrossRef]

Color Res. Appl. (1)

A. Pons and J. Campos, “Spectrophotometric error in colour coordinates introduced by fluorescence of white calibration tile,” Color Res. Appl.  29, 111–114 (2004).
[CrossRef]

Color. Technol. (1)

Y. S. Chung, J. H. Xin, and K. M. Sin, “Improvement of inter-instrumental agreement for reflectance spectrophotometers,” Color. Technol.  120, 284–292 (2004).
[CrossRef]

Displays (1)

J. C. Zwinkels, “Colour measuring instruments and their calibration,” Displays  16, 163–171 (1996).
[CrossRef]

J. Soc. Dyers Colour. (1)

F. Malkin, J. A. Larkin, J. F. Verrill, and R. H. Wardman, “The BCRA-NPL ceramic colour standards, series II—master spectral reflectance and thermochromism data,” J. Soc. Dyers Colour.  113, 84–94 (1997).
[CrossRef]

Metrologia (1)

H. Shitomi and I. Saito, “Photoluminescence from white reference materials for spectral diffuse reflectance measurements upon exposure to radiation shorter than 400 nm,” Metrologia  43, S36–S40 (2006).
[CrossRef]

Other (1)

National Institute of Standards and Technology, “Report of calibration of spectral reflectance factor for diffuse reflectance standards test,” 844/265215-01 (NIST, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the color measurement system used at MSL.

Fig. 2
Fig. 2

Modified 0 ° : 45 ° attachment for PerkinElmer Lambda 900 spectrophotometer measurements using a photomultiplier tube.

Fig. 3
Fig. 3

Schematic diagram of the fluorescence detection system used at MSL.

Fig. 4
Fig. 4

Apparatus for comparison of tiles from different sets.

Fig. 5
Fig. 5

Reflectance spectra in 6 ° : di geometry taken with both the MSL reference spectrophotometer using a silicon-diode trap detector and a handheld KM spectrophotometer for two color tiles: (a)  G 1 and (b)  G 3 .

Fig. 6
Fig. 6

Reflectance spectra in 6 ° : di geometry taken with both a photomultiplier tube and a silicon-diode trap detector for (a) yellow, (b) orange, and (c) red color tiles.

Fig. 7
Fig. 7

Fluorescence emitted by three CCSII tiles under excitation by a 488 nm laser. The collection efficiency of the fluorescent emission is not identical for the tiles, so the traces are not necessarily indicative of relative magnitudes.

Fig. 8
Fig. 8

Reflectance measured in 0 ° : 45 ° geometry using a PerkinElmer Lambda 900 but with a KV550 cut-on filter in front of the detector to allow transmittance of fluorescence at wavelengths longer than 550 nm .

Tables (4)

Tables Icon

Table 1 Difference in Color Coordinates ( Δ E * a b ) for CIE Illuminant A and CIE 1964 Standard 10 ° Observer for 12 Tiles When Reflectance Is Measured Using a Silicon-Diode Trap Detector or Photomultiplier Tube

Tables Icon

Table 2 Fraction of Scattered Signal, Using Apparatus Shown in Fig. 4, Attributable to Fluorescence for Isochromatic Tiles from Different Sets

Tables Icon

Table 3 Potential Errors in Color Parameters for CCSII Orange Tile (Narrowband-Detector—Broadband-Detector)

Tables Icon

Table 4 Potential Errors in Color Parameters for CCSII Red Tile (Narrowband Detector—Broadband Detector)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ t = ρ r ( T C ) ( S C ) ,

Metrics