Abstract

Lateral scanning white-light interferometry represents an attractive alternative to the standard white-light interferometry. Its main advantage over the latter procedure consists in the ability to scan large samples continuously, without the need of a cumbersome stitching procedure. Presently, the main drawback in the path of large-scale industrial acceptance of this method is the need for careful calibration of the tilt angle prior to each measurement. A novel self-calibration approach is presented. Using the data acquired during the normal scanning process, the need of an initial tilt angle calibration is eliminated and on-the-fly system adjustments for the best signal-to-noise ratio can be performed without an increase in the measurement time dictated by recalibration.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Olszak, “Lateral scanning white-light interferometer,” Appl. Opt.  39, 3906–3913 (2000).
    [CrossRef]
  2. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt.  29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  3. S. Chim and G. Kino, “Three-dimensional image realization in interference microscopy,” Appl. Opt.  31, 2550–2553 (1992).
    [CrossRef] [PubMed]
  4. D. Cohen, P. Caber, and C. Brophy, “Rough surface profiler and method,” U.S. patent 5,133,601 (28 July 1992).
  5. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt.  32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  6. P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt.  42, 389–401 (1995).
    [CrossRef]
  7. K. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A  13, 832–843 (1996).
    [CrossRef]
  8. P. Sandoz, “An algorithm for profilometry by white-light phase shifting interferometry,” J. Mod. Opt.  43, 1545–1554 (1996).
  9. C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad bandwidth interferometry,” U.S. patent 5,633,715 (27 May 1997).
  10. P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
    [CrossRef]
  11. R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng.  38, 1081–1087 (1999).
    [CrossRef]
  12. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt.  39, 2107–2113 (2000).
    [CrossRef]
  13. M.-C. Park and S.-W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng.  39, 952–959 (2000).
    [CrossRef]
  14. M. Hissmann and F. A. Hamprecht, “Bayesian surface estimation for white light interferometry,” Opt. Eng.  44, 015601(2005).
    [CrossRef]

2005 (1)

M. Hissmann and F. A. Hamprecht, “Bayesian surface estimation for white light interferometry,” Opt. Eng.  44, 015601(2005).
[CrossRef]

2000 (3)

1999 (1)

R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng.  38, 1081–1087 (1999).
[CrossRef]

1997 (1)

P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
[CrossRef]

1996 (2)

P. Sandoz, “An algorithm for profilometry by white-light phase shifting interferometry,” J. Mod. Opt.  43, 1545–1554 (1996).

K. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A  13, 832–843 (1996).
[CrossRef]

1995 (1)

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt.  42, 389–401 (1995).
[CrossRef]

1993 (1)

1992 (1)

1990 (1)

Ai, C.

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad bandwidth interferometry,” U.S. patent 5,633,715 (27 May 1997).

Brophy, C.

D. Cohen, P. Caber, and C. Brophy, “Rough surface profiler and method,” U.S. patent 5,133,601 (28 July 1992).

Caber, P.

D. Cohen, P. Caber, and C. Brophy, “Rough surface profiler and method,” U.S. patent 5,133,601 (28 July 1992).

Caber, P. J.

Chim, S.

Chim, S. S. C.

Cohen, D.

D. Cohen, P. Caber, and C. Brophy, “Rough surface profiler and method,” U.S. patent 5,133,601 (28 July 1992).

de Groot, P.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt.  42, 389–401 (1995).
[CrossRef]

Deck, L.

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt.  42, 389–401 (1995).
[CrossRef]

Devillers, R.

P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
[CrossRef]

Hamprecht, F. A.

M. Hissmann and F. A. Hamprecht, “Bayesian surface estimation for white light interferometry,” Opt. Eng.  44, 015601(2005).
[CrossRef]

Harasaki, A.

Hissmann, M.

M. Hissmann and F. A. Hamprecht, “Bayesian surface estimation for white light interferometry,” Opt. Eng.  44, 015601(2005).
[CrossRef]

Kim, S.-W.

M.-C. Park and S.-W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng.  39, 952–959 (2000).
[CrossRef]

Kino, G.

Kino, G. S.

Larkin, K.

Novak, E. L.

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad bandwidth interferometry,” U.S. patent 5,633,715 (27 May 1997).

Olszak, A.

Park, M.-C.

M.-C. Park and S.-W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng.  39, 952–959 (2000).
[CrossRef]

Plata, A.

P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
[CrossRef]

Sandoz, P.

P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
[CrossRef]

P. Sandoz, “An algorithm for profilometry by white-light phase shifting interferometry,” J. Mod. Opt.  43, 1545–1554 (1996).

Schmit, J.

Tiziani, H. J.

R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng.  38, 1081–1087 (1999).
[CrossRef]

Windecker, R.

R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng.  38, 1081–1087 (1999).
[CrossRef]

Wyant, J. C.

Appl. Opt. (5)

J. Mod. Opt. (3)

P. Sandoz, “An algorithm for profilometry by white-light phase shifting interferometry,” J. Mod. Opt.  43, 1545–1554 (1996).

P. Sandoz, R. Devillers, and A. Plata, “Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry,” J. Mod. Opt.  44, 519–534 (1997).
[CrossRef]

P. de Groot and L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt.  42, 389–401 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (3)

M.-C. Park and S.-W. Kim, “Direct quadratic polynomial fitting for fringe peak detection of white light scanning interferograms,” Opt. Eng.  39, 952–959 (2000).
[CrossRef]

M. Hissmann and F. A. Hamprecht, “Bayesian surface estimation for white light interferometry,” Opt. Eng.  44, 015601(2005).
[CrossRef]

R. Windecker and H. J. Tiziani, “Optical roughness measurements using extended white light interferometry,” Opt. Eng.  38, 1081–1087 (1999).
[CrossRef]

Other (2)

C. Ai and E. L. Novak, “Centroid approach for estimating modulation peak in broad bandwidth interferometry,” U.S. patent 5,633,715 (27 May 1997).

D. Cohen, P. Caber, and C. Brophy, “Rough surface profiler and method,” U.S. patent 5,133,601 (28 July 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of lateral scanning white-light interferometer.

Fig. 2
Fig. 2

Linear fringe pattern obtained from a flat surface.

Fig. 3
Fig. 3

Different object pixels translated in the CCD field of view.

Fig. 4
Fig. 4

Extracted correlogram for a given object pixel.

Fig. 5
Fig. 5

Stage and objective reference systems.

Fig. 6
Fig. 6

Actual 8.2 μm step height used in measurement.

Fig. 7
Fig. 7

Step height measurement for different tilt angles.

Fig. 8
Fig. 8

Surface roughness variation with the tilt angle.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( x obj y obj ) = [ cos α sin α sin α cos α ] ( x y ) .
Δ x obj = M ( cos α ) Δ x .
S CCD N = M ( cos α ) Δ x .
V = Δ x Δ T = S CCD N M ( cos α ) Δ T .
Δ h obj = ( sin α ) Δ x = ( sin α ) S CCD N M ( cos α ) = S CCD N M tan α .
Δ φ 0 = 4 π λ 0 Δ h obj = 4 π λ 0 S CCD N M tan α .
N ppc = 2 π | Δ φ 0 | = λ 0 M 2 S CCD N | tan α | .
F corr = 1 N ppc = 2 S CCD N | tan α | λ 0 M .
| tan α | = F corr λ 0 M 2 S CCD N .
Δ h obj = F corr λ 0 2 ,
N Pts = D Δ x = D M S CCD N cos α .
N Fr = N Pts × F corr = D M ( cos α ) S CCD N 2 S CCD N tan α λ 0 M = 2 D λ 0 sin α .

Metrics