Abstract

Laser-induced fluorescence (LIF) is used in planar droplet sizing, assuming that the signal integrated over the droplet is proportional to its volume. Nevertheless, this assumption is rigorously valid in nonabsorbing mixtures. We performed an examination of the LIF signal with a fluorescence model, based on the Lorenz–Mie theory and on ray-tracing methods, for n-heptane droplets seeded by 3-pentanone. A parametrical study quantifies the bias caused not only by the absorption of the laser, but also by shadow zones in the droplets, which do not contribute to the fluorescence signal. Moreover, the effect of the first- and higher-order internal reflections is examined. The results of this study have immediately implications for the design of measurement techniques.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
    [CrossRef]
  2. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  3. M. C. Thurber, “Acetone laser induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Thesis report TSD-120 (Stanford University, 1999).
  4. M. C. Thurber, F. Grisch, B. J. Kirby, M. Vostmeier, and R. K. Hansom, “Measurements and modelling of acetone laser induced fluorescence with implication for temperature imaging diagnostics,” Appl. Opt. 37, 4963–4978 (1998).
    [CrossRef]
  5. M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
    [CrossRef]
  6. G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
    [CrossRef]
  7. G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
    [CrossRef]
  8. G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
    [CrossRef]
  9. C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
    [CrossRef]
  10. P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
    [CrossRef]
  11. P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
    [CrossRef]
  12. P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
    [CrossRef]
  13. P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
    [CrossRef]
  14. R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40, 3586–3597 (2001).
    [CrossRef]
  15. R. Domann and Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18, 3–11 (2001).
    [CrossRef]
  16. R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
    [CrossRef]
  17. R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209–218 (2003).
    [CrossRef]
  18. L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
    [CrossRef]
  19. R. Li, X. Han, L. Shi, K. F. Ren, and H. Jiang, “Debye series for Gaussian beam scattering by a multilayered sphere,” Appl. Opt. 46, 4804–4812 (2007).
    [CrossRef] [PubMed]

2009 (1)

B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
[CrossRef]

2007 (1)

2006 (1)

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

2005 (4)

G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
[CrossRef]

G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
[CrossRef]

2004 (1)

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

2003 (2)

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209–218 (2003).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

2002 (2)

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
[CrossRef]

P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
[CrossRef]

2001 (4)

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40, 3586–3597 (2001).
[CrossRef]

R. Domann and Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18, 3–11 (2001).
[CrossRef]

L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
[CrossRef]

2000 (1)

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

1998 (1)

Blondel, D.

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

Bruchhausen, M.

M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
[CrossRef]

Castanet, G.

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
[CrossRef]

G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

Delconte, A.

G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
[CrossRef]

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

Domann, R.

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209–218 (2003).
[CrossRef]

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
[CrossRef]

R. Domann and Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18, 3–11 (2001).
[CrossRef]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40, 3586–3597 (2001).
[CrossRef]

Doué, N.

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

Frackowiak, B.

B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
[CrossRef]

Gouesbet, G.

L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
[CrossRef]

Gréhan, G.

L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
[CrossRef]

Grisch, F.

Guillard, F.

M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
[CrossRef]

Han, X.

Hansom, R. K.

Hardalupas, Y.

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209–218 (2003).
[CrossRef]

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
[CrossRef]

R. Domann and Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18, 3–11 (2001).
[CrossRef]

R. Domann and Y. Hardalupas, “Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration,” Appl. Opt. 40, 3586–3597 (2001).
[CrossRef]

Jiang, H.

Jones, A. R.

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
[CrossRef]

Kirby, B. J.

Lavergne, G.

B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
[CrossRef]

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lavieille, P.

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lebouché, M.

G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
[CrossRef]

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Lemoine, F.

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
[CrossRef]

G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
[CrossRef]

M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
[CrossRef]

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Li, R.

Maqua, C.

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

Méès, L.

L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
[CrossRef]

Ren, K. F.

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Shi, L.

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Strzelecki, A.

B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
[CrossRef]

Thurber, M. C.

M. C. Thurber, F. Grisch, B. J. Kirby, M. Vostmeier, and R. K. Hansom, “Measurements and modelling of acetone laser induced fluorescence with implication for temperature imaging diagnostics,” Appl. Opt. 37, 4963–4978 (1998).
[CrossRef]

M. C. Thurber, “Acetone laser induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Thesis report TSD-120 (Stanford University, 1999).

Virepinte, J. F.

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

Vostmeier, M.

Appl. Opt. (3)

Combust. Sci. Technol. (1)

P. Lavieille, F. Lemoine, and M. Lebouché, “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence,” Combust. Sci. Technol. 174, 117–142 (2002).
[CrossRef]

Exp. Fluids (8)

P. Lavieille, A. Delconte, D. Blondel, M. Lebouché, and F. Lemoine, “Non-intrusive temperature measurements using three-color laser-induced fluorescence,” Exp. Fluids 36, 706–716 (2004).
[CrossRef]

M. Bruchhausen, F. Guillard, and F. Lemoine, “Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF),” Exp. Fluids 38, 123–131 (2005).
[CrossRef]

G. Castanet, P. Lavieille, M. Lebouché, and F. Lemoine, “Measurement of the temperature distribution within monodisperse combusting droplets in linear streams using two-color laser-induced fluorescence,” Exp. Fluids 35, 563–571 (2003).
[CrossRef]

G. Castanet, A. Delconte, and F. Lemoine, “Evaluation of the temperature gradients within combusting droplets in linear stream using two colors laser-induced fluorescence,” Exp. Fluids 39, 431–440 (2005).
[CrossRef]

B. Frackowiak, A. Strzelecki, and G. Lavergne, “A liquid-vapor interface positioning method applied to PLIF measurements around evaporating monodisperse droplet streams,” Exp. Fluids 46, 671–682 (2009).
[CrossRef]

C. Maqua, G. Castanet, N. Doué, G. Lavergne, and F. Lemoine, “Temperature measurements of binary droplets using three colors induced fluorescence,” Exp. Fluids 40, 786–797 (2006).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, J. F. Virepinte, and M. Lebouché, “Temperature measurements on droplets in monodisperse stream using laser induced fluorescence,” Exp. Fluids 29, 429–437 (2000).
[CrossRef]

P. Lavieille, F. Lemoine, G. Lavergne, and M. Lebouché, “Evaporating and combusting droplet temperature measurements using two-color laser induced fluorescence,” Exp. Fluids 31, 45–55 (2001).
[CrossRef]

Int. J. Heat Mass Transfer (1)

G. Castanet, M. Lebouché, and F. Lemoine, “Heat and mass transfer of combusting monodisperse droplets in a linear stream,” Int. J. Heat Mass Transfer 48, 3261–3275 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

R. Domann, Y. Hardalupas, and A. R. Jones, “A study of the influence of absorption on the spatial distribution of fluorescence intensity within large droplets using Mie theory, geometrical optics and imaging experiments,” Meas. Sci. Technol. 13, 280–291 (2002).
[CrossRef]

Opt. Commun. (1)

L. Méès, G. Gouesbet, and G. Gréhan, “Interactions between femtosecond pulses and a spherical microcavity: internal fields,” Opt. Commun. 199, 33–38 (2001).
[CrossRef]

Part. Part. Syst. Charact. (2)

R. Domann and Y. Hardalupas, “Quantitative measurement of planar droplet Sauter mean diameter in sprays using planar droplet sizing,” Part. Part. Syst. Charact. 20, 209–218 (2003).
[CrossRef]

R. Domann and Y. Hardalupas, “A study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique,” Part. Part. Syst. Charact. 18, 3–11 (2001).
[CrossRef]

Prog. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Other (1)

M. C. Thurber, “Acetone laser induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Thesis report TSD-120 (Stanford University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometric arrangement of laser, droplet, and camera for the ray-tracing method.

Fig. 2
Fig. 2

LMT and Beer–Lambert fluence fields.

Fig. 3
Fig. 3

Effect of the internal reflections of the fluorescence rays on the fluorescence fields ( n i , droplet = 1 e 6 ). Note the large change of scales.

Fig. 4
Fig. 4

Fluence field inside the droplet and fluorescence images at the camera for various droplet sizes and absorption levels. Note the large variation of color scales.

Fig. 5
Fig. 5

Effect of the internal reflections of the laser on the fluence and fluorescence fields ( n i , droplet = 1 e 6 ).

Fig. 6
Fig. 6

(a) Different cases considered for the quantitative evaluation of overall fluorescence intensity. (b)–(c) Variation of the b f exponent and of the fluorescence signal ( 100 μm droplet) versus n i , droplet .

Fig. 7
Fig. 7

Variation of the normalized fluorescence signal versus n i , droplet for different droplet diameters.

Fig. 8
Fig. 8

Evolution of the b f exponent versus n i , droplet for different diameter ranges.

Tables (1)

Tables Icon

Table 1 Imaginary Part of Refractive Index n i , droplet for Various Mixtures from Domann et al. [16] and from the Present Study

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S fluo , droplet = K f × d b f
n i , droplet = λ σ [ C ] n droplet 4 π .
x S = r S 2 y M 2 y S = y M .
E liq = E S T laser exp [ σ [ C ] ( x M x S ) ] ,
T laser = 1 2 [ 1 | n droplet 1 ( sin ( Ψ n droplet ) 2 cos ( ψ ) | 2 | n droplet 1 ( sin ( Ψ ) n droplet ) 2 + cos ( ψ ) | 2 ] + 1 2 [ 1 | 1 ( sin ( Ψ ) n droplet ) 2 n droplet cos ( Ψ ) | 2 | 1 ( sin ( Ψ ) n droplet ) 2 + n droplet cos ( Ψ ) | 2 ] .
x F = x I , y F = y I , z F = r S 2 x I 2 y I 2 .
S fluo , ray = T fluo × K l × ray E liq d V .
η = 1 σ [ C ] d = λ n droplet 4 π n i , droplet d .
S fluo , droplet = K σ × [ C ] × z y x S x S exp [ σ [ C ] ( x M x S ) ] d x d y d z ,
S fluo , droplet = K σ × [ C ] × z y 1 exp [ 2 σ [ C ] x S ] σ [ C ] d y d z ,
S fluo , droplet = K σ × [ C ] × z y 1 σ [ C ] d y d z = K σ π d 2 4 σ .

Metrics