Abstract

A theoretical and experimental investigation of the transverse load sensitivity of Bragg gratings in birefringent fibers to conforming contact is presented. A plane elasticity model is used to predict the contact dimensions between a conforming material and optical fiber and the principal stresses, indicating birefringence, created as a result of this contact. The transverse load sensitivity of commercially available birefringent fiber is experimentally measured for two cases of conforming contact. Theoretical and experimental results show that birefringent optical fiber can be used to make modulus-independent measurements of contact load. Therefore, Bragg gratings could be applied to conforming contact load measurements while avoiding some of the complications associated with existing contact sensors: specifically, the necessity to precalibrate by using materials with mechanical properties identical to those found in situ.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber optic pressure sensing with conforming elastomers

Li-Yang Shao, Qi Jiang, and Jacques Albert
Appl. Opt. 49(35) 6784-6788 (2010)

Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain

Christopher R. Dennison and Peter M. Wild
Appl. Opt. 51(9) 1188-1197 (2012)

Influence of high hydrostatic pressure on beat length in highly birefringent single-mode bow tie fibers

Wojtek J. Bock, Andrzej W. Domański, and Tomasz R. Woliński
Appl. Opt. 29(24) 3484-3488 (1990)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription