Abstract

Conventional two-mode fiber-optic strain sensors measure strain by inducing a path difference between the two propagating modes and spatially interfering the modal output pattern. At high strain values, the output mode pattern changes (rotates), limiting the range of measured strain. We have applied a mode separation/recombination technique and demonstrated it with a two-mode strain sensor, resulting in a rotationally invariant/stable output mode pattern and extended range of measured strain. The sensor was designed to measure strain, but with very little modification, it can measure temperature, pressure, electric and magnetic fields, etc. The improved rotationally invariant two-mode fiber-optic strain sensor performs to within 2% of standard electrical strain gauges.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252-2258(1971).
    [CrossRef] [PubMed]
  2. M. R. Layton and J. A. Bucaro, “Optical fiber acoustic sensor utilizing mode-mode interference,” Appl. Opt. 18, 666-670(1979).
    [CrossRef] [PubMed]
  3. A. Safaai-Jazi and J. C. McKeeman, “Synthesis of intensity patterns in few-mode optical fibers,” J. Lightwave Technol. 9, 1047-1052 (1991).
    [CrossRef]
  4. A. Safaai-Jazi and R. O. Claus, “Synthesis of interference patterns in few-mode optical fibers,” Proc. SPIE 986, 180-185 (1989).
  5. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, “Selective launching of higher-order modes into an optical fiber with an optical phase shifter,” Opt. Lett. 19, 454-456 (1994).
    [CrossRef] [PubMed]
  6. M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
    [CrossRef]
  7. K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
    [CrossRef]
  8. C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
    [CrossRef]
  9. M. Spajer, J. Rolland, and J. Neiras, “Separateurs de modes realises par abrasion d'une fibre optique utilisables dans des capteurs interferometriques,” Opto 89, Paris, 24-28 April 1989, pp. 71-74
  10. S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
    [CrossRef]
  11. S. Shaklan, “Selective mode injection and observation for few mode fiber optics,” Appl. Opt. 30, 4379-4383 (1991).
    [CrossRef] [PubMed]
  12. C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
    [CrossRef]

2003

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

1994

1993

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
[CrossRef]

1991

A. Safaai-Jazi and J. C. McKeeman, “Synthesis of intensity patterns in few-mode optical fibers,” J. Lightwave Technol. 9, 1047-1052 (1991).
[CrossRef]

S. Shaklan, “Selective mode injection and observation for few mode fiber optics,” Appl. Opt. 30, 4379-4383 (1991).
[CrossRef] [PubMed]

1990

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
[CrossRef]

1989

A. Safaai-Jazi and R. O. Claus, “Synthesis of interference patterns in few-mode optical fibers,” Proc. SPIE 986, 180-185 (1989).

1986

M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
[CrossRef]

1979

1971

Bucaro, J. A.

Carquille, B.

M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
[CrossRef]

Claus, R.

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

Claus, R. O.

A. Safaai-Jazi and R. O. Claus, “Synthesis of interference patterns in few-mode optical fibers,” Proc. SPIE 986, 180-185 (1989).

Corrado, B. J.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Froehly, C.

S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
[CrossRef]

Gloge, D.

Grossman, B.

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

Hou, C.

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

Layton, M. R.

Maillotte, H.

M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
[CrossRef]

McKeeman, J. C.

A. Safaai-Jazi and J. C. McKeeman, “Synthesis of intensity patterns in few-mode optical fibers,” J. Lightwave Technol. 9, 1047-1052 (1991).
[CrossRef]

Miller, M.

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

Murphy, K.

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

Murshid, S.

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

Neiras, J.

M. Spajer, J. Rolland, and J. Neiras, “Separateurs de modes realises par abrasion d'une fibre optique utilisables dans des capteurs interferometriques,” Opto 89, Paris, 24-28 April 1989, pp. 71-74

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Reynaud, F.

S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
[CrossRef]

Rolland, J.

M. Spajer, J. Rolland, and J. Neiras, “Separateurs de modes realises par abrasion d'une fibre optique utilisables dans des capteurs interferometriques,” Opto 89, Paris, 24-28 April 1989, pp. 71-74

Safaai-Jazi, A.

A. Safaai-Jazi and J. C. McKeeman, “Synthesis of intensity patterns in few-mode optical fibers,” J. Lightwave Technol. 9, 1047-1052 (1991).
[CrossRef]

A. Safaai-Jazi and R. O. Claus, “Synthesis of interference patterns in few-mode optical fibers,” Proc. SPIE 986, 180-185 (1989).

Shaklan, S.

S. Shaklan, “Selective mode injection and observation for few mode fiber optics,” Appl. Opt. 30, 4379-4383 (1991).
[CrossRef] [PubMed]

S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
[CrossRef]

Sokol, M.

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

Spajer, M.

M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
[CrossRef]

M. Spajer, J. Rolland, and J. Neiras, “Separateurs de modes realises par abrasion d'une fibre optique utilisables dans des capteurs interferometriques,” Opto 89, Paris, 24-28 April 1989, pp. 71-74

Thornburg, W. Q.

Vengsarkar, A.

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
[CrossRef]

Zhu, X. D.

Appl. Opt.

IEEE Photonics Technol. Lett.

C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194-197 (1993).
[CrossRef]

J. Lightwave Technol.

A. Safaai-Jazi and J. C. McKeeman, “Synthesis of intensity patterns in few-mode optical fibers,” J. Lightwave Technol. 9, 1047-1052 (1991).
[CrossRef]

K. Murphy, M. Miller, A. Vengsarkar, and R. Claus, “Elliptical-core two-mode optical-fiber sensor implementation methods,” J. Lightwave Technol. 8, 1688-1696 (1990).
[CrossRef]

Opt. Commun.

M. Spajer, B. Carquille, and H. Maillotte, “Application of intermodal interference to fibre sensors,” Opt. Commun. 60, 261-264 (1986).
[CrossRef]

Opt. Laser Technol.

C. Hou, B. Grossman, S. Murshid, and M. Sokol, “Experimental determination of propagation constant using end-etched fiber,” Opt. Laser Technol. 35, 355-360 (2003).
[CrossRef]

Opt. Lett.

Proc. SPIE

A. Safaai-Jazi and R. O. Claus, “Synthesis of interference patterns in few-mode optical fibers,” Proc. SPIE 986, 180-185 (1989).

S. Shaklan, C. Froehly, and F. Reynaud, “Stellar Interferometer with multimode fiber optics,” Proc. SPIE 1319, 448-449 (1990).
[CrossRef]

Other

M. Spajer, J. Rolland, and J. Neiras, “Separateurs de modes realises par abrasion d'une fibre optique utilisables dans des capteurs interferometriques,” Opto 89, Paris, 24-28 April 1989, pp. 71-74

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Conventional two-mode fiber-optic strain sensor architecture.

Fig. 2
Fig. 2

Circular-core two-mode fiber end-face output at different values of strain.

Fig. 3
Fig. 3

Conventional circular-core two-mode fiber-optic sensor response to strain.

Fig. 4
Fig. 4

Experimental setup to observe mode rings.

Fig. 5
Fig. 5

Conventional and modified-waveguide outputs of single- and two-mode circular-core fibers.

Fig. 6
Fig. 6

Experimental setup to measure the power in individual mode rings as a function of strain.

Fig. 7
Fig. 7

Variation in mode ring power as a function of strain of a circular-core two-mode fiber.

Fig. 8
Fig. 8

Experimental setup to measure polarization dependence of individual mode rings on applied strain.

Fig. 9
Fig. 9

Variation in individual mode ring power as a function of strain at polarizer angle 0 ° (similar variation with strain for polarizer angle 22.5 ° , 45 ° , 67.5 ° , and 90 ° ).

Fig. 10
Fig. 10

Rotationally invariant circular-core two-mode fiber sensor system layout.

Fig. 11
Fig. 11

Strain response of the rotationally invariant circular-core two-mode fiber-optic strain sensor.

Fig. 12
Fig. 12

Calibration curve of the rotationally invariant two-mode fiber-optic strain sensor.

Fig. 13
Fig. 13

Repeatability of fiber-optic strain sensor (calculated strain values).

Fig. 14
Fig. 14

1 σ , 2 σ , 3 σ , and 4 σ values of fiber-optic strain compared to electrical strain gauge values.

Fig. 15
Fig. 15

Comparison of fiber-optic strain sensor average value and electrical strain gauge average value.

Fig. 16
Fig. 16

Sensitivity of the fiber-optic strain sensor.

Fig. 17
Fig. 17

Picture of repeatability measurements indicating noise.

Fig. 18
Fig. 18

Worst-case noise (at 0 με ).

Fig. 19
Fig. 19

Summary of performance of the rotationally invariant two-mode fiber-optic strain sensor.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V = ( Intensity Maximum Intensity Minimum ) ( Intensity Maximum + Intensity Minimum ) ,
y = 4.07 + 0.25 sin ( 2 π x 115.56 + 0.11 ) ,
y = 5.13 + 2.78 sin 2 ( 2 π x 470.38 + 2.65 ) ,
x = { sin 1 ( y 5.13 2.78 2.65 + π ) } 470.38 2 π ,
y = 0.98 x ,
( S N ) dB = 20 log ( SignalLevel NoiseAmplitude ) = 20 log ( 3.460 0.030 ) 41 dB .

Metrics