Abstract

We report detection and identification of trace quantities of explosives at standoff distances up to 150m with high sensitivity (signal-to-noise ratio of 70) and high selectivity. The technique involves illuminating the target object with laser radiation at a wavelength that is strongly absorbed by the target. The resulting temperature rise is observed by remotely monitoring the increased blackbody radiation from the sample. An unambiguous determination of the target, TNT, in soil samples collected from an explosives test site in China Lake Naval Air Weapons Station is achieved through the use of a tunable CO2 laser that scans over the absorption fingerprint of the target explosives. The theoretical analysis supports the observation and indicates that, with optimized detectors and data processing algorithms, the measurement capability can be improved significantly, permitting rapid standoff detection of explosives at distances approaching 1km. The detection sensitivity varies as R2 and, thus, with the availability of high power, room-temperature, tunable mid-wave infrared and long-wave infrared quantum cascade lasers, this technology may play an important role in screening personnel and their belongings at short distances, such as in airports, for detecting and identifying explosives material residue on persons.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
    [CrossRef]
  2. G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
    [CrossRef]
  3. G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
    [CrossRef]
  4. M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
    [CrossRef]
  5. M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
    [CrossRef]
  6. M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
    [CrossRef]
  7. M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
    [CrossRef]
  8. A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
    [CrossRef] [PubMed]
  9. M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
    [CrossRef] [PubMed]
  10. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007).
    [CrossRef] [PubMed]
  11. See for example, A. Mandelis, “Photothermal analysis of thermal properties of solids,” J. Therm. Anal. 37, 1065-1101 (1991).
    [CrossRef]
  12. K. Cottingham, “Ion mobility spectrometry rediscovered,” Anal. Chem. 75, 435A (2003).
    [CrossRef]
  13. R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
    [CrossRef]
  14. A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
    [CrossRef] [PubMed]
  15. For example, see VaporTracer from GE Industrial (www.geindustrial.com/ge-interlogix/iontrack) or IONSCAN 400B from Smiths Detection (www.smithsdetection.com).
  16. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).
  17. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775(2005).
    [CrossRef] [PubMed]
  18. The principles behind interference rejection, in the presence of overlapping optical absorption, are described in Ref. .
  19. Explosive materials include TNT, Tritonal (80% TNT and 20% aluminum powder), H6 (45% RDX, 30% TNT, 20% aluminum powder and 5% paraffin wax), Minol (40-48% TNT, 38-40% aluminum nitrate and 10-20% aluminum powder). See also http://www.mlmintl.com/MK-80series.pdf.
  20. M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919-3924 (1977).
    [CrossRef]
  21. P. W. Kruse, “A comparison of the limits to the performance of thermal and photon detector imaging arrays,” Infrared Phys. Technol. 36, 869-882 (1995).
    [CrossRef]
  22. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
    [CrossRef]
  23. F. J. Crawford, “Electro-optical sensors overview,” IEEE Aerosp. Electron. Syst. Mag. 13(10), 17-24 (1998).
    [CrossRef]
  24. N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000).
    [CrossRef]
  25. V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000).
    [CrossRef]
  26. F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
    [CrossRef]
  27. C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
    [CrossRef]
  28. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  29. Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
    [CrossRef]

2008

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

2007

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

2006

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

2005

G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775(2005).
[CrossRef] [PubMed]

2004

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

2003

K. Cottingham, “Ion mobility spectrometry rediscovered,” Anal. Chem. 75, 435A (2003).
[CrossRef]

2002

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

2001

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

2000

N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000).
[CrossRef]

V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000).
[CrossRef]

1998

F. J. Crawford, “Electro-optical sensors overview,” IEEE Aerosp. Electron. Syst. Mag. 13(10), 17-24 (1998).
[CrossRef]

1995

P. W. Kruse, “A comparison of the limits to the performance of thermal and photon detector imaging arrays,” Infrared Phys. Technol. 36, 869-882 (1995).
[CrossRef]

1991

See for example, A. Mandelis, “Photothermal analysis of thermal properties of solids,” J. Therm. Anal. 37, 1065-1101 (1991).
[CrossRef]

1977

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919-3924 (1977).
[CrossRef]

1960

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

Abu-Hamdeh, N. H.

N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000).
[CrossRef]

Aellen, T.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Angel, S. M.

Atkinson, D. A.

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

Baghdassarian, O.

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Bai, Y.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Beck, M.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Blaser, S.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Bulliard, J. M.

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Capasso, F.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Capasso, Federico

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Carter, J. C.

Casteli, A.

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

Cottingham, K.

K. Cottingham, “Ion mobility spectrometry rediscovered,” Anal. Chem. 75, 435A (2003).
[CrossRef]

Crawford, F. J.

F. J. Crawford, “Electro-optical sensors overview,” IEEE Aerosp. Electron. Syst. Mag. 13(10), 17-24 (1998).
[CrossRef]

Curl, R. F.

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Darvish, S. R.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Datskos, P. G.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Diehl, L.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Dunayevskiy, I.

Dwivedi, P.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

Eichman, G. A.

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

Evans, A.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Ewing, G. J.

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

Ewing, R. G.

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

Faist, J.

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Fan, J.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Fredericks, W.

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

Go, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Halik, M.

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

Hill, H. H.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

Hofstetter, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Kanu, A. B.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

Kosterev, A. A.

G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

Kruse, P. W.

P. W. Kruse, “A comparison of the limits to the performance of thermal and photon detector imaging arrays,” Infrared Phys. Technol. 36, 869-882 (1995).
[CrossRef]

Lavrik, N. V.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Lawrence-Snyder, M.

Lax, M.

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919-3924 (1977).
[CrossRef]

Leong, W. H.

V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000).
[CrossRef]

Lyakh, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Macdonald, T.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Mandelis, A.

See for example, A. Mandelis, “Photothermal analysis of thermal properties of solids,” J. Therm. Anal. 37, 1065-1101 (1991).
[CrossRef]

Marcillac, N.

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Matz, L.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

Maulini, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Mitloehner, F. M.

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Mukherjee, A.

Narasimhan, L. R.

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Nguyen, J.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Patel, C. K. N.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Patel, C. Kumar N.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Pflügl, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Prasanna, M.

Pristera, F.

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Pushkarsky, M. B.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Rajic, S.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Razeghi, M.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Reeder, R. C.

N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000).
[CrossRef]

Reynolds, J. G.

Scaffidi, J.

Senesac, L. R.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).

Slivken, S.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Tam, M.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Tarnawski, V.-R.

V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000).
[CrossRef]

Thundat, T.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).

Tittel, F. K.

G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Tsekoun, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Van Neste, C. W.

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).

Wang, Q. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wang, X.

A. Mukherjee, I. Dunayevskiy, M. Prasanna, R. Go, A. Tsekoun, X. Wang, J. Fan, and C. K. N. Patel, “Sub-ppb level detection of dimethyl methyl phosphonate (DMMP) using quantum cascade laser photoacoustic spectroscopy,” Appl. Opt. 47, 1543-1548 (2008).
[CrossRef] [PubMed]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Webber, M. E.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Weidmann, D.

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

Whipple, R. E.

Wysocky, G.

G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

Zhang, W.

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

Zhao, Y.

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Anal. Chem.

F. Pristera, M. Halik, A. Casteli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem. 32, 495-508 (1960).
[CrossRef]

K. Cottingham, “Ion mobility spectrometry rediscovered,” Anal. Chem. 75, 435A (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi-continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79, 907-913 (2004).
[CrossRef]

G. Wysocky, A. A. Kosterev, and F. K. Tittel, “Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in-situ NO monitoring of industrial exhaust systems,” Appl. Phys. B 80, 617-625 (2005).
[CrossRef]

G. Wysocky, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769-777 (2005).
[CrossRef]

M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narasimhan, and C. K. N. Patel, “Laser based photoacoustic ammonia sensors for industrial applications,” Appl. Phys. B 75, 391-396 (2002).
[CrossRef]

Appl. Phys. Lett.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents,” Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, Federico Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. Kumar N. Patel, “1.6 Watt, high wallplug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen, and M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power,” Appl. Phys. Lett. 92, 101105 (2008).
[CrossRef]

C. W. Van Neste, L. R. Senesac, and T. Thundat, “Surface photoacoustic spectroscopy,” Appl. Phys. Lett. 92, 234012(2008).

Appl. Spectrosc.

Electron. Lett.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers,” Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

IEEE Aerosp. Electron. Syst. Mag.

F. J. Crawford, “Electro-optical sensors overview,” IEEE Aerosp. Electron. Syst. Mag. 13(10), 17-24 (1998).
[CrossRef]

Infrared Phys. Technol.

P. W. Kruse, “A comparison of the limits to the performance of thermal and photon detector imaging arrays,” Infrared Phys. Technol. 36, 869-882 (1995).
[CrossRef]

J. Appl. Phys.

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation,” J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

M. Lax, “Temperature rise induced by a laser beam,” J. Appl. Phys. 48, 3919-3924 (1977).
[CrossRef]

J. Mass Spectrom.

A. B. Kanu, P. Dwivedi, M. Tam, L. Matz, and H. H. Hill Jr., “Special feature: perspective on ion mobility-mass spectrometry,” J. Mass Spectrom. 43, 1-22 (2008).
[CrossRef] [PubMed]

J. Therm. Anal.

See for example, A. Mandelis, “Photothermal analysis of thermal properties of solids,” J. Therm. Anal. 37, 1065-1101 (1991).
[CrossRef]

Meas. Sci. Technol.

M. E. Webber, T. Macdonald, M. B. Pushkarsky, C. K. N. Patel, Y. Zhao, N. Marcillac, and F. M. Mitloehner, “Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy,” Meas. Sci. Technol. 16, 1547-1553 (2005).
[CrossRef]

Proc. Nat. Acad. Sci. USA

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT,” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75, 1134-1148 (2004).
[CrossRef]

Soil Sci. Soc. Am. J.

N. H. Abu-Hamdeh and R. C. Reeder, “Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter,” Soil Sci. Soc. Am. J. 64, 1285-1290 (2000).
[CrossRef]

Talanta

R. G. Ewing, D. A. Atkinson, G. A. Eichman, and G. J. Ewing, “A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds,” Talanta 54, 515-529 (2001).
[CrossRef]

Transp. Porous Media

V.-R. Tarnawski and W. H. Leong, “Thermal conductivity of soils at very low moisture content and moderate temperatures,” Transp. Porous Media 41, 137-147 (2000).
[CrossRef]

Other

The principles behind interference rejection, in the presence of overlapping optical absorption, are described in Ref. .

Explosive materials include TNT, Tritonal (80% TNT and 20% aluminum powder), H6 (45% RDX, 30% TNT, 20% aluminum powder and 5% paraffin wax), Minol (40-48% TNT, 38-40% aluminum nitrate and 10-20% aluminum powder). See also http://www.mlmintl.com/MK-80series.pdf.

For example, see VaporTracer from GE Industrial (www.geindustrial.com/ge-interlogix/iontrack) or IONSCAN 400B from Smiths Detection (www.smithsdetection.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Infrared absorption feature of a target to be detected and identified (PNNL spectra of TNT film of unknown thickness) and positions of CO 2 12 laser lines (10P band).

Fig. 2
Fig. 2

(a) Expected temperature rise for illumination with radiation that is strongly absorbed by TNT (e.g., at 10P26 CO 2 line). (b) Expected temperature rise for illumination with radiation that is weakly absorbed by TNT (e.g., at 10P18 CO 2 line).

Fig. 3
Fig. 3

Schematic of experimental setup for stand of detection of explosives using ROSE.

Fig. 4
Fig. 4

Photograph of the experimental setup deployed at China Lake NAWS for standoff detection of explosives.

Fig. 5
Fig. 5

Experimental data showing thermal blackbody radiation signal from trance quantities of TNT at a standoff distance of 75 m , illuminated with CO 2 laser radiation at a wavelength of 10.653 mm (10P26), corresponding to the peak of the absorbance signature of TNT.

Fig. 6
Fig. 6

ROSE signal for a standoff distance of 150 m as a function of the wavelength and PNNL data for TNT and ROSE signal from “clean soil” sample.

Fig. 7
Fig. 7

Typical TNT detection spectra obtained with ROSE for standoff distances of 20, 25, 50, 75, and 150 m .

Fig. 8
Fig. 8

Measured ROSE signal at the peak absorption of trace TNT in Paveway sample.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

C T t = div J + E ,
2 T = 1 κ T t E K ,
2 T = E K .
T ( R , Z , W ) = B 0 J 0 ( λ R ) F ( λ ) W e λ z λ e W z W 2 λ 2 d λ ,
Δ T ( R , Z , W ) = δ T max N ( R , Z , W ) ,
δ T max = P L 2 π K w .
N ( R , Z , W ) = W 0 F ( λ ) d λ 0 J 0 ( λ R ) F ( λ ) W e λ Z λ e W Z W 2 λ 2 d λ .
Δ T ( 0 , 0 , W ) = δ T max N ( 0 , 0 , W ) ,
N ( 0 , 0 , W ) = 1 π 0 e λ 2 4 ( W W + λ ) d λ .
N ( 0 , 0 , W ) 1 for  large   W
Δ T = P L 2 π K w .
NEP = A det NETD τ 0 ( Δ P Δ T ) 4 F 2 ,
P R = a T ε σ T 3 Δ T ( 0 , 0 , W ) A π D 2 ,
Δ T = P L e α d 2 π K w

Metrics