Abstract

We present experimental results of imaging and digital superresolution in a multiaperture miniature folded imaging architecture called PANOPTES. We prove the feasibility of integrating a low f-number folded imagers within a steerable multiaperture framework while maintaining a thin profile. Stringent requirements including low f-number and compact form factor, combined with the need for an ability to steer individual fields of view necessitate an off-axis design, resulting in a plane symmetric optical system. We present a detailed description of the ensuing optical design and its performance. The feasibility of this architecture is demonstrated through experiments and preliminary reconstruction results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1, R1-R16 (2006).
    [CrossRef]
  2. J. Tanida, T. Kumagai, K. Yamada, and S. Miyatake, “Thin Observation Module by Bound Optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813(2001).
    [CrossRef]
  3. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115-2126 (2009).
    [CrossRef] [PubMed]
  4. P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871-2883 (2006).
    [CrossRef] [PubMed]
  5. M. Shankar, Rebecca Willett, Nikos Pitsianis, Timothy Schulz, Robert Gibbons, Robert Te Kolste, James Carriere, Caihua Chen, Dennis Prather, and David Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1-B10 (2008).
    [CrossRef] [PubMed]
  6. Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison, and Joseph E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007).
    [CrossRef] [PubMed]
  7. R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
    [PubMed]
  8. Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
    [CrossRef]
  9. M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
    [CrossRef] [PubMed]
  10. V. R. Bhakta and M. P. Christensen, “Performance metrics for multiaperture computational imaging sensor,” presented at the OSA topical meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, North Carolina, 6-9 June 2005.
  11. I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).
  12. Pedro Arguijo, Marija Strojnik Scholl, and Gonzalo Paez, “Diffraction patterns formed by an off-axis paraboloid surface,” Appl. Opt. 40, 2909-2916 (2001).
    [CrossRef]
  13. M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (1)

2006 (3)

2001 (2)

1997 (1)

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997).
[CrossRef] [PubMed]

Arguijo, Pedro

Athale, Ravindra

Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
[CrossRef]

Barnard, R.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Behrmann, G.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Bhakta, V. R.

M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
[CrossRef] [PubMed]

V. R. Bhakta and M. P. Christensen, “Performance metrics for multiaperture computational imaging sensor,” presented at the OSA topical meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, North Carolina, 6-9 June 2005.

Brady, D.

Brady, David

Brady, David J.

Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
[CrossRef]

Carriere, James

Chen, C.

Chen, Caihua

Christensen, M. P.

M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
[CrossRef] [PubMed]

V. R. Bhakta and M. P. Christensen, “Performance metrics for multiaperture computational imaging sensor,” presented at the OSA topical meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, North Carolina, 6-9 June 2005.

I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).

Dillon, T.

Douglas, S. C.

M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
[CrossRef] [PubMed]

I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).

Duparré, J. W.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1, R1-R16 (2006).
[CrossRef]

Elad, M.

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997).
[CrossRef] [PubMed]

Feuer, A.

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997).
[CrossRef] [PubMed]

Ford, Joseph E.

Gibbons, R.

Gibbons, Robert

Gray, B.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Haney, M. W.

Hasenplaugh, W. C.

Healy, Dennis M.

Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
[CrossRef]

Kumagai, T.

Matthews, S.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Mirani, T.

Mirotznik, M.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Miyatake, S.

Morrison, R. L.

Morrison, Rick L.

Neifeld, M. A.

Neifeld, Mark A.

Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
[CrossRef]

Paez, Gonzalo

Pauca, V. P.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Pitsianis, N.

Pitsianis, Nikos

Plemmons, R. J.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Portnoy, A.

Prasad, S.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Prather, D.

Prather, Dennis

Rajan, D.

M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
[CrossRef] [PubMed]

I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).

Scholl, Marija Strojnik

Schulz, Timothy

Shankar, M.

Shankar, P. M.

Silver, A.

Sinharoy, I.

I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).

Stack, R. A.

Stack, Ronald A.

Sun, X.

Tanida, J.

Te Kolste, R.

Te Kolste, Robert

Torgersen, T. C.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Tremblay, Eric J.

van der Gracht, J.

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Willett, Rebecca

Wippermann, F. C.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1, R1-R16 (2006).
[CrossRef]

Wood, S. L.

Yamada, K.

Appl. Opt. (7)

J. Tanida, T. Kumagai, K. Yamada, and S. Miyatake, “Thin Observation Module by Bound Optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806-1813(2001).
[CrossRef]

A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115-2126 (2009).
[CrossRef] [PubMed]

P. M. Shankar, W. C. Hasenplaugh, R. L. Morrison, R. A. Stack, and M. A. Neifeld, “Multiaperture imaging,” Appl. Opt. 45, 2871-2883 (2006).
[CrossRef] [PubMed]

M. Shankar, Rebecca Willett, Nikos Pitsianis, Timothy Schulz, Robert Gibbons, Robert Te Kolste, James Carriere, Caihua Chen, Dennis Prather, and David Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1-B10 (2008).
[CrossRef] [PubMed]

Eric J. Tremblay, Ronald A. Stack, Rick L. Morrison, and Joseph E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007).
[CrossRef] [PubMed]

M. P. Christensen, V. R. Bhakta, D. Rajan, T. Mirani, S. C. Douglas, S. L. Wood, and M. W. Haney, “Adaptive flat multiresolution multiplexed computational imaging architecture utilizing micromirror arrays to steer subimager field of view,” Appl. Opt. 45, 2884-2892 (2006).
[CrossRef] [PubMed]

Pedro Arguijo, Marija Strojnik Scholl, and Gonzalo Paez, “Diffraction patterns formed by an off-axis paraboloid surface,” Appl. Opt. 40, 2909-2916 (2001).
[CrossRef]

Bioinspir. Biomim. (1)

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1, R1-R16 (2006).
[CrossRef]

IEEE Trans. Image Process. (1)

M. Elad and A. Feuer, “Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images,” IEEE Trans. Image Process. 6, 1646-1658(1997).
[CrossRef] [PubMed]

Opt. Photon. News (1)

Ravindra Athale, Dennis M. Healy, David J. Brady, and Mark A. Neifeld, “Reinventing the camera,” Opt. Photon. News 19(3), 32-37 (2008).
[CrossRef]

Other (3)

V. R. Bhakta and M. P. Christensen, “Performance metrics for multiaperture computational imaging sensor,” presented at the OSA topical meeting on Computational Optical Sensing and Imaging (COSI), Charlotte, North Carolina, 6-9 June 2005.

I. Sinharoy, S. C. Douglas, D. Rajan, and M. P. Christensen, “Model-based region-of-interest estimation for adaptive resource allocation in multiaperture imaging systems,” in Proceedings of IEEE ICASSP, (Las Vegas, April 2008).

R. J. Plemmons, S. Prasad, S. Matthews, M. Mirotznik, R. Barnard, B. Gray, V. P. Pauca, T. C. Torgersen, J. van der Gracht, and G. Behrmann, “PERIODIC: Integrated Computational Array Imaging Technology,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper CMA1.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the PANOPTES architecture.

Fig. 2
Fig. 2

Example of the digital superresolution (DSR) regime. DSR allows recovery of aliased information, caused by detector limited performance of an imaging system, up to the optical cutoff frequency using subpixel shifted observations.

Fig. 3
Fig. 3

(a) Optical design of a PANOPTES subimager. The surfaces have been numbered from 1 to 4. Surface 3 is the sole (reflective) power surface of the subimager. (b) Photograph of a single subimager with a laser beam approximately showing the on-axis ray trajectory.

Fig. 4
Fig. 4

RMS Spot-size versus field. The sweet-spot region is indicated by the (red online) line in (a), where the RMS spot size is less than or equal to the pixel size ( 7.4 μm ). (b) Space-variant point spread function (x and y axis, range 0.5 mm to + 0.5 mm ). This figure is generated using the image simulation tool in ZEMAX.

Fig. 5
Fig. 5

Full field-of-view image (for object distance 43 cm ) taken with a PANOPTES subimager. The highlighted region [shown by the (green online) box] is the sweet spot where the optical cutoff is larger than the detector cutoff. The degradations in image quality due to space variant blurring and light fall-off (due to small aperture size) are clearly visible in the image.

Fig. 6
Fig. 6

MTF versus field ( + y ) at 67.5 1 p / mm (Nyquist frequency), 100 1 p / mm ( 1.5 × Nyquist frequency ) and 135 1 p / mm ( 2 × Nyquist frequency ) . Both tangential and sagittal plots are shown.

Fig. 7
Fig. 7

Plots of MTF versus field for relative mirror tilt angle of (a)  5 ° and (b)  + 5 ° with respect to the + 20 ° rest position of the steering mirror.

Fig. 8
Fig. 8

(a) Photograph of a single uncoated PANOPTES subimager. (b) Photograph of four uncoated subimagers.

Fig. 9
Fig. 9

Photograph of a tiled array of PANOPTES subimagers arranged on a large CCD detector.

Fig. 10
Fig. 10

(a) Cropped region of a low resolution image captured by subimager 1 (left-placed subimager), (b) high-resolution image obtained by interlacing and interpolation using subpixel shifted low resolution images (no deblurring), and (c) reconstructed high-resolution image obtained by performing DSR.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g ( k ) = DHT o ( k ) ,
J { o ( k ) } = E { g ( k ) DHT o ( k ) 2 }
o ( k + 1 ) = o ( k ) + μ ( k ) T T H T D T [ g ( k ) DHT o ( k ) ] ,

Metrics