Abstract

We propose and demonstrate a novel approach to increase the effective bandwidth of a frequency- modulated continuous-wave (FMCW) ranging system. This is achieved by algorithmically stitching together the swept spectra of separate laser sources. The result is an improvement in the range resolution proportional to the increase in the swept-frequency range. An analysis of this system as well as the outline of the stitching algorithm are presented. Using three distinct swept-frequency optical waveforms, we experimentally demonstrate a threefold improvement in the range resolution of a three-sweep approach over the conventional FMCW method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dieckmann, “FMCW-lidar with tunable twin-guide laser diode,” Electron. Lett. 30, 308-309 (1994).
    [CrossRef]
  2. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
    [CrossRef]
  3. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
    [CrossRef]
  4. C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 (IEEE, 2005), Vol. 3, pp. 1757-1759.
    [CrossRef]
  5. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
    [CrossRef]
  6. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
    [CrossRef]
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
    [CrossRef] [PubMed]
  8. K. W. Holman, D. G. Kocher, and S. Kaushik, MIT/LL development of broadband linear frequency chirp for high resolution ladarProc. SPIE 6572, 65720J(2007).
    [CrossRef]
  9. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991-15999 (2009).
    [CrossRef] [PubMed]
  10. I. Komarov and S. Smolskiy, Fundamentals of Short-Range FM Radar (Artech, 2003).
  11. E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
    [CrossRef]

2009 (1)

2007 (2)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

2005 (1)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

2003 (1)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

1994 (1)

A. Dieckmann, “FMCW-lidar with tunable twin-guide laser diode,” Electron. Lett. 30, 308-309 (1994).
[CrossRef]

1988 (1)

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
[CrossRef]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Boudoux, C.

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

Cohen, D.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
[CrossRef]

Coldren, L.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
[CrossRef]

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Dieckmann, A.

A. Dieckmann, “FMCW-lidar with tunable twin-guide laser diode,” Electron. Lett. 30, 308-309 (1994).
[CrossRef]

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Hara, T.

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 (IEEE, 2005), Vol. 3, pp. 1757-1759.
[CrossRef]

Holman, K. W.

K. W. Holman, D. G. Kocher, and S. Kaushik, MIT/LL development of broadband linear frequency chirp for high resolution ladarProc. SPIE 6572, 65720J(2007).
[CrossRef]

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

Ito, H.

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 (IEEE, 2005), Vol. 3, pp. 1757-1759.
[CrossRef]

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Kaushik, S.

K. W. Holman, D. G. Kocher, and S. Kaushik, MIT/LL development of broadband linear frequency chirp for high resolution ladarProc. SPIE 6572, 65720J(2007).
[CrossRef]

Kocher, D. G.

K. W. Holman, D. G. Kocher, and S. Kaushik, MIT/LL development of broadband linear frequency chirp for high resolution ladarProc. SPIE 6572, 65720J(2007).
[CrossRef]

Komarov, I.

I. Komarov and S. Smolskiy, Fundamentals of Short-Range FM Radar (Artech, 2003).

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Leyva, V.

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Ndiaye, C.

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 (IEEE, 2005), Vol. 3, pp. 1757-1759.
[CrossRef]

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Rakuljic, G.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Satyan, N.

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Smolskiy, S.

I. Komarov and S. Smolskiy, Fundamentals of Short-Range FM Radar (Artech, 2003).

Strzelecki, E.

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
[CrossRef]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

Vakoc, B. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Vasilyev, A.

Yariv, A.

Yun, S. H.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981-1983(2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Electron. Lett. (1)

A. Dieckmann, “FMCW-lidar with tunable twin-guide laser diode,” Electron. Lett. 30, 308-309 (1994).
[CrossRef]

J. Biomed. Opt. (1)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source,” J. Biomed. Opt. 10, 044009 (2005).
[CrossRef]

J. Lightwave Technol. (1)

E. Strzelecki, D. Cohen, and L. Coldren, “Investigation of tunable single frequency diode lasers for sensor applications,” J. Lightwave Technol. 6, 1610-1618 (1988).
[CrossRef]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

K. W. Holman, D. G. Kocher, and S. Kaushik, MIT/LL development of broadband linear frequency chirp for high resolution ladarProc. SPIE 6572, 65720J(2007).
[CrossRef]

C. Ndiaye, T. Hara, and H. Ito, “Profilometry using a frequency-shifted feedback laser,” in Proceedings of the Conference on Lasers and Electro-Optics, 2005 (IEEE, 2005), Vol. 3, pp. 1757-1759.
[CrossRef]

I. Komarov and S. Smolskiy, Fundamentals of Short-Range FM Radar (Artech, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of an FMCW ranging experiment: PD, photodetector.

Fig. 2
Fig. 2

Multiple source model: (a) ω-domain description. The top panel shows a multiple source window function a N ( ω ) . This function may be decomposed into the sum of a single source window function (middle panel) and a function that describes the intersweep gaps (bottom panel). (b) ζ-domain description. The three figures show the amplitudes of the ζ-domain FTs of the corresponding functions from (a).

Fig. 3
Fig. 3

Schematic of an MS-FMCW ranging experiment. A reference target is imaged along with the target of interest, so that the intersweep gaps may be recovered: BS, beam splitter; PD, photodetector.

Fig. 4
Fig. 4

Proposed MS-FMCW system architecture: BS, beam splitter; PD, photodetector.

Fig. 5
Fig. 5

Experimental results. The gray and black curves correspond to single-sweep and stitched three-sweep measurements, respectively: (a) single reflector spectrum and (b) glass slide spectrum. The peaks correspond to reflections from the two air/glass interfaces. The slide thickness is 1 mm .

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

e ( t ) = rect ( t T / 2 T ) cos ( ϕ 0 + ω 0 t + ξ t 2 2 ) ,
rect ( x ) { 0 , | x | > 1 / 2 1 / 2 , | x | = 1 / 2 1 , | x | < 1 / 2 .
ω ( t ) = ω 0 + ξ t .
i ( t ) = | e ( t ) + Re ( t τ ) | 2 = R rect ( t T / 2 T ) cos [ ( ξ τ ) t + ω 0 τ ξ τ 2 2 ] ,
y ( ω ) i ( ω ω 0 ξ ) = R rect ( ω ω 0 π B 2 π B ) cos ( ω τ ξ τ 2 2 ) .
Y ( ζ ) = π B R exp ( j ξ τ 2 2 ) exp [ j ( ζ τ ) ( ω 0 + π B ) ] sinc [ B ( ζ τ ) ] ,
Δ d = c 2 B ,
FWHM 3.79 π B = Δ d 7.58 π c .
y target ( ω ) = n R n cos ( ω τ n ξ τ n 2 2 ) ,
y ( ω ) = a ( ω ) y target ( ω ) ,
Y ( ζ ) = 1 2 n R n exp ( j ξ τ n 2 2 ) A ( ζ τ n ) ,
a N ( ω ) = rect ( ω ω 0 , 1 π B ˜ 2 π B ˜ ) k = 1 N 1 rect ( ω ω 0 , k + 1 + π δ k 2 π δ k )
A N ( ζ ) = 2 π B ˜ exp [ j ζ ( ω 0 , 1 + π B ˜ ) ] sinc ( ζ B ˜ ) 2 π k = 1 N 1 δ k exp [ j ζ ( ω 0 , k + 1 π δ k ) ] sinc ( ζ δ k )
ζ null 1 = | B ˜ exp [ j ζ null ( ω 0 , 1 + π B ˜ ) ] + k = 1 N 1 δ k exp [ j ζ null ( ω 0 , k + 1 π δ k ) ] | .
Δ d MS FMCW c 2 k = 1 N B k .
y k ( ω ) = rect ( ω π B k 2 π B k ) y target ( ω + ω 0 , k ) .
y stitched ( ω ) = k = 1 N y k ( ω ω 0 , k ) .
| Y stitched ( ζ ) | = | k = 1 N exp [ j 2 π ζ l = 1 k 1 ( B l + δ l ) ] Y k ( ζ ) | .
Y k ( τ a ) = π B k R a exp [ j ξ τ a 2 2 + j ω 0 , k τ a ] , k = 1 , 2.
ψ a Y 1 ( τ a ) Y 2 ( τ a ) = exp [ j 2 π τ a ( B + δ ) ] .
arg [ exp ( j 2 π τ a B ) ψ a ] = 2 π τ a δ .
ψ n Y 1 ( τ n ) Y 2 ( τ n ) , n = a , b
arg { exp [ j 2 π ( τ a τ b ) B ] ψ a ψ b } = 2 π ( τ a τ b ) δ .

Metrics