Abstract

A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution disc itself is not yet available. However, different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects [1, 2, 3, 4, 5, 6]. The main problem of the modeling is that temperature-dependent material properties, such as thermal conductivity and refractive indices, are not known or not accurate enough to allow quantitative predictions. Therefore, it could be useful to define a signal-based or phenomenological model that can be calibrated with experimental data. In this contribution, we developed a complete optical channel model—from non-return-to-zero inverted (NRZI) input to disc readout signal—including the reflectivity of a superresolution disc with InSb used for the mask layer. Model parameters are derived from data measured using a static tester. The model is finally applied to a configuration appropriate for a dynamic superresolution optical drive by moving the focused spot relative to the material.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bouwhuis and H. M. Spruit, “Optical storage read-out of nonlinear disks,” Appl. Opt. 29, 3766-3768 (1990).
    [CrossRef] [PubMed]
  2. K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
    [CrossRef]
  3. J.-R. Liu, P.-Y. Liu, N.-Y. Tang, and H.-P. D. Shieh, “Pulse-read on erasable thermal phase-change superresolution disks,” Appl. Opt. 37, 8187-8194 (1998).
    [CrossRef]
  4. J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
    [CrossRef]
  5. J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
    [CrossRef]
  6. B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,” in Proceedings of E*PCOS07 European Symposium Phase Change and Ovonic Sciences (Zermatt, Switzerland, 1-4 September 2007), http://www.epcos.org/library/papers/pdf_2007/paper06_BerangereHyot.pdf.
  7. B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.
  8. D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.
  9. D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
    [PubMed]
  10. 4GOOD project Web site: http://www.4goodtechnology.org.
  11. SURPASS project Web site: http://www.fp7-surpass.org.
  12. Y. Li, “Degeneracy in the Fraunhofer diffraction of truncated Gaussian beams,” J. Opt. Soc. Am. A 4, 1237-1242 (1987).
    [CrossRef]
  13. K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. thesis (Technical University of Eindhoven/National University of Singapore, 2007).
  14. H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
    [CrossRef]
  15. J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.
  16. B. Hyot, X. Biquard, and F. Laulagnet, “Influence of the crystalline microstructure of the InSb active layer in a super-resolution ROM disk,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper We-I-06.
  17. A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]
  18. J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de super-resolution (High-density optical storage: physical and physical-chemical study on the phenomenon of super-resolution),” Ph.D. thesis (in French) (Institut Polytechnique de Grenoble, 2008).

2007

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

2004

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

2002

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
[CrossRef]

1998

1993

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

1990

1987

Anciant, R.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

Aratani, K.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Armand, M.-F.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

Behringer, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Bergmans, J. W. M.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
[CrossRef]

Biquard, X.

B. Hyot, X. Biquard, and F. Laulagnet, “Influence of the crystalline microstructure of the InSb active layer in a super-resolution ROM disk,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper We-I-06.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,” in Proceedings of E*PCOS07 European Symposium Phase Change and Ovonic Sciences (Zermatt, Switzerland, 1-4 September 2007), http://www.epcos.org/library/papers/pdf_2007/paper06_BerangereHyot.pdf.

Bouwhuis, G.

Bruneau, J.-M.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

Cai, K.

K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. thesis (Technical University of Eindhoven/National University of Singapore, 2007).

Chen, X.-M.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

Coene, W. M. J.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
[CrossRef]

Eyberg, R.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Först, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

Franke, A.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Frerichs, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Fukaya, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Fukumoto, A.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Gahn, C.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Gidon, S.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

Hepper, D.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

Hyot, B.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,” in Proceedings of E*PCOS07 European Symposium Phase Change and Ovonic Sciences (Zermatt, Switzerland, 1-4 September 2007), http://www.epcos.org/library/papers/pdf_2007/paper06_BerangereHyot.pdf.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

B. Hyot, X. Biquard, and F. Laulagnet, “Influence of the crystalline microstructure of the InSb active layer in a super-resolution ROM disk,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper We-I-06.

Kaneko, M.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Knappmann, S.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Knittel, J.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Kolobov, A.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Kurz, H.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

Kuwahara, M.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Laulagnet, F.

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,” in Proceedings of E*PCOS07 European Symposium Phase Change and Ovonic Sciences (Zermatt, Switzerland, 1-4 September 2007), http://www.epcos.org/library/papers/pdf_2007/paper06_BerangereHyot.pdf.

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.

B. Hyot, X. Biquard, and F. Laulagnet, “Influence of the crystalline microstructure of the InSb active layer in a super-resolution ROM disk,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper We-I-06.

Lell, A.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Li, Y.

Liu, J.-R.

Liu, P.-Y.

Marchewka, A.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

Nakano, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Ono, M.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Pichon, J.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de super-resolution (High-density optical storage: physical and physical-chemical study on the phenomenon of super-resolution),” Ph.D. thesis (in French) (Institut Polytechnique de Grenoble, 2008).

Pilard, G.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

Poupinet, L.

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

Pozidis, H.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
[CrossRef]

Richter, H.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Ripperda, C.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

Semar, W.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Shieh, H.-P. D.

Shima, T.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Spruit, H. M.

Tang, N.-Y.

Theis, O.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

Tominaga, J.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Wolter, K.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

Wuttig, M.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

Yasuda, K.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Appl. Opt.

IEEE Trans. on Commun.

H. Pozidis, J. W. M. Bergmans, and W. M. J. Coene, “Modeling and compensation of asymmetry in optical recording,” IEEE Trans. on Commun. 50, 2052-2063 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

K. Yasuda, M. Ono, K. Aratani, A. Fukumoto, and M. Kaneko, “Premastered optical disk by superresolution,” Jpn. J. Appl. Phys. 32, 5210-5213 (1993).
[CrossRef]

Nanotech.

J. Tominaga, T. Shima, M. Kuwahara, T. Fukaya, A. Kolobov, and T. Nakano, “Ferroelectric catastrophe: beyond nanometre-scale optical resolution,” Nanotech. 15, 411-415 (2004).
[CrossRef]

Proc. SPIE

J. Pichon, R. Anciant, J.-M. Bruneau, B. Hyot, S. Gidon, M.-F. Armand, and L. Poupinet, “Multiphysics simulation of super-resolution BD ROM optical disk readout,” Proc. SPIE 6282, 628219 (2007).
[CrossRef]

Other

B. Hyot, X. Biquard, and F. Laulagnet, “Super-resolution ROM disc with a semi-conductive InSb active layer,” in Proceedings of E*PCOS07 European Symposium Phase Change and Ovonic Sciences (Zermatt, Switzerland, 1-4 September 2007), http://www.epcos.org/library/papers/pdf_2007/paper06_BerangereHyot.pdf.

B. Hyot, S. Gidon, M.-F. Armand, L. Poupinet, J. Pichon, R. Anciant, J.-M. Bruneau, G. Pilard, and H. Richter, “Phase change materials and superrens,” in Proceedings of E*PCOS05 European Symposium Phase Change and Ovonic Sciences (King's College Cambridge, University of Cambridge, England, 3-6 September 2005), http://www.epcos.org/library/papers/pdf_2005/Poupinet.pdf.

D. Hepper, H. Richter, S. Knappmann, R. Eyberg, J. Knittel, M. Frerichs, A. Franke, C. Gahn, B. Hyot, J.-M. Bruneau, A. Lell, M. Behringer, M. Först, K. Wolter, M. Wuttig, and W. Semar, “4GOOD--technology and prototype for a 4th-generation omni-purpose optical disc system,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'08 (IEEE, 2008), paper 2.3-4, pp. 57-58.

D. Hepper, X.-M. Chen, S. Knappmann, G. Pilard, H. Richter, O. Theis, and M. Wuttig, “Increasing the storage density for a 4th-generation optical disc,” in Proceedings of the Institute of Electrical and Electronics Engineers International Conference on Consumer Electronics, ICCE'09 (IEEE, 2009), paper 1.3-3.
[PubMed]

4GOOD project Web site: http://www.4goodtechnology.org.

SURPASS project Web site: http://www.fp7-surpass.org.

K. Cai, “Design and analysis of parity-check-code-based optical recording systems,” Ph.D. thesis (Technical University of Eindhoven/National University of Singapore, 2007).

J. Pichon, M.-F. Armand, F. Laulagnet, and B. Hyot, “Thermo optical origins of the super-resolution effect. real-time characterization of the huge and reversible optical nonlinearity of InSb,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper Mo-B-06.

B. Hyot, X. Biquard, and F. Laulagnet, “Influence of the crystalline microstructure of the InSb active layer in a super-resolution ROM disk,” in Proceedings of the International Symposium on Optical Memory 2007 (ISOM, 2007), paper We-I-06.

A. Marchewka, C. Ripperda, K. Wolter, M. Först, and H. Kurz, “Analytik der Maskierungsschicht in wiederbeschreibbaren SuperRENS-Datenspeichern (Analytics of the mask layer in re-writable SuperRENS disc memories),” final report (in German) (RWTH Aachen, 2008). [This is their final report toward the funding authority under the funded project 4GOOD. The report is publicly available at the TIB (Technical Information Library) Hannover, which is associated with the University of Hannover, Germany.]

J. Pichon, “Enregistrement optique haute densité: etude physique et physico-chimique du phénomène de super-resolution (High-density optical storage: physical and physical-chemical study on the phenomenon of super-resolution),” Ph.D. thesis (in French) (Institut Polytechnique de Grenoble, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram of the major components to be considered in the superresolution optical channel model.

Fig. 2
Fig. 2

Measured (left) and simulated (right) reflectivity of an InSb-based superresolution material when excited with a laser pulse of 200 ns duration and different power (sources: CEA/LETI and RWTH Aachen, IHT, respectively).

Fig. 3
Fig. 3

Model of the reflectivity R of an infinitesimal disc element ( x , y ) depending on accumulated energy E ( x , y , n ) while subjected to laser intensity I ( x , y , n ) .

Fig. 4
Fig. 4

Normalized model reflectivity, as a function of time, of an InSb-based superresolution disc material when excited with a laser pulse of 200 ns duration at different power ( NA = 0.75 , model parameters: see text), and influence on shape of curves if model parameters are increased, depicted by arrows.

Fig. 5
Fig. 5

Normalized reflectivity at t = 200 ns of the model (left) and the experiments by CEA/LETI and simulations by RWTH Aachen (right, source: RWTH), as a function of laser power ( NA = 0.75 , model parameters: see text).

Fig. 6
Fig. 6

Normalized model reflectivity, as a function of time, of an InSb-based superresolution disc material when excited with a laser pulse of 200 ns duration at different power ( NA = 0.85 , model parameters: see text).

Fig. 7
Fig. 7

Reflectivity (left) and reflected intensity (right) as spatial functions (top) in the steady state at t = 240 ns for NA = 0.85 and P = 1.5 mW . Bottom figures show cross sections at y = 0 (blue/dark solid lines) and sum across one dimension (red/medium solid lines, normalized to same maximum). The shape of the focused spot is shown (bottom left, pink/light dashed-dotted line).

Fig. 8
Fig. 8

Normalized cross section (a) and sum across one dimension (b) of reflected intensity in steady state ( t = 240 ns ) of the superresolution disc material at P = 1.5 mW (straight lines) versus shape of focused spot (dotted), which is also the shape of the reflected intensity in the diffraction-limited case at P = 0.5 mW (dashed).

Fig. 9
Fig. 9

Reflectivity (left) and reflected intensity (right) as spatial functions (top) in the steady state at t = 150 ns for v = 3 m / s , P = 3 mW . Bottom figures show cross sections at y = 0 (blue/dark solid lines) and sum in radial direction (red/medium solid lines, normalized to same maximum). The shape of the focused spot is shown in pink (bottom left).

Fig. 10
Fig. 10

Normalized cross section (a) and sum in radial direction (b) of reflected intensity in steady state ( t = 150 ns ) of the superresolution disc material at v = 3 m / s , P = 3 mW (straight lines) versus shape of focused spot (dotted) which is also the shape of the reflected intensity in the diffraction-limited case at P = 0.5 mW (dashed).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = π · P · NA 2 λ 2 ( 2 J 1 ( 2 π x 2 + y 2 NA / λ ) 2 π x 2 + y 2 NA / λ ) 2 ,
F ( Ω ) = { 2 sin π Ω π Ω ( arccos ( Ω Ω c ) Ω Ω c 1 ( Ω Ω c ) 2 ) , | Ω | Ω c 0 , | Ω | > Ω c ,
R ( x , y , n ) = { r · E ( x , y , n ) + R 0 if    E ( x , y , n ) E Thr R max if    E ( x , y , n ) > E Thr .
T = { T s if     E ( x , y , n 1 ) E Thr T m if     E ( x , y , n 1 ) > E Thr .
R ( 200 ns ) = R 0 + r · ( 1 exp ( 200 ns / T s ) ) · I 2 ( x , y ) d x d y = R 0 + r · ( 1 exp ( 200 ns / T s ) ) · 0.46 · P · π · ( NA / λ ) 2 .
R ˙ ( 0 ) = r · 0.46 · P · π · NA 2 T s λ 2 .
E Thr = E ( 0 , 0 , 200 ns ) = I ( 0 , 0 , 200 ns ) · ( 1 exp ( 200 ns / T s ) ) = P · π · ( NA / λ ) 2 · ( 1 exp ( 200 ns / T s ) ) .

Metrics