Abstract

Narrow-bandwidth (27cm1) tunable picosecond pulses from 480nm780nm were generated from the output of a 1kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femto second NOPA, this system utilizes a broadband pump beam, the chirped 400nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
    [CrossRef]
  2. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22,1494-1496 (1997).
    [CrossRef]
  3. A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998).
    [CrossRef]
  4. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283-1285 (1998).
    [CrossRef]
  5. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  6. S. R. Greenfield and M. R. Wasielewski, “Near-transform-limited visible and near-IR femtosecond pulses from optical parametric amplification using type II β-barium borate,” Opt. Lett. 20, 1394-1396 (1995).
    [CrossRef] [PubMed]
  7. D. K. Hore, J. L. King, F. G. Moore, D. S. Alavi, M. Y. Hamamoto, and G. L. Richmond, “Ti:sapphire-based picosecond visible-infrared sum-frequency spectroscopy from 900-3100 cm-1,” Appl. Spectrosc. 58, 1377-1384 (2004).
    [CrossRef] [PubMed]
  8. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
    [CrossRef]
  9. Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
    [CrossRef]
  10. N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
    [CrossRef] [PubMed]
  11. J. A. McGuire, W. Beck, X. Wei, and Y. R. Shen, “Fourier-transform sum-frequency surface vibrational spectroscopy with femtosecond pulses,” Opt. Lett. 24, 1877-1879(1999).
    [CrossRef]
  12. J. C. Deak, L. K. Iwaki, and D. D. Dlott, “High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy,” Opt. Lett. 22, 1796-1798 (1997).
    [CrossRef]
  13. I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).
  14. L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
    [CrossRef]
  15. D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: 3D infrared Raman spectroscopy,” Chem. Phys. 266, 149-166 (2001).
    [CrossRef]
  16. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653-667 (2000).
    [CrossRef]
  17. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
    [CrossRef]
  18. M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007).
    [CrossRef] [PubMed]
  19. D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007).
    [CrossRef] [PubMed]
  20. X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595.
    [CrossRef]
  21. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
    [CrossRef]
  22. J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
    [CrossRef] [PubMed]
  23. P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
    [CrossRef]
  24. S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
    [CrossRef]
  25. T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt. 45, 558-564 (2006).
    [CrossRef] [PubMed]
  26. M. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15, 8884-8891 (2007).
    [CrossRef] [PubMed]
  27. J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
    [CrossRef]
  28. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758-1764 (1993).
    [CrossRef]
  29. L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999).
    [CrossRef]
  30. M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
    [CrossRef]
  31. Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997).
    [CrossRef]
  32. Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
    [CrossRef]
  33. S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
    [CrossRef]
  34. S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
    [CrossRef]
  35. S. Reisner and M. Gutmann, “Numerical treatment of UV-pumped, white-light-seeded single-pass noncollinear parametric amplifiers,” J. Opt. Soc. Am. B 16, 1801-1813(1999).
    [CrossRef]
  36. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).
  37. L. Shen and D. Fan, “Theoretical research on noncollinear match conditions of the type I optical parametric process,” J. Opt. Soc. Am. B 24, 90-93 (2007).
    [CrossRef]
  38. K. Kato, “Second-harmonic generation to 2048 A in beta-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
    [CrossRef]
  39. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23, 59-64(1987).
    [CrossRef]

2009 (1)

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

2007 (7)

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
[CrossRef]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007).
[CrossRef] [PubMed]

M. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express 15, 8884-8891 (2007).
[CrossRef] [PubMed]

L. Shen and D. Fan, “Theoretical research on noncollinear match conditions of the type I optical parametric process,” J. Opt. Soc. Am. B 24, 90-93 (2007).
[CrossRef]

2006 (4)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

T. C. Gunaratne, M. Milliken, J. R. Challa, and M. C. Simpson, “Tunable ultrafast infrared/visible laser to probe vibrational dynamics,” Appl. Opt. 45, 558-564 (2006).
[CrossRef] [PubMed]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

2004 (2)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

D. K. Hore, J. L. King, F. G. Moore, D. S. Alavi, M. Y. Hamamoto, and G. L. Richmond, “Ti:sapphire-based picosecond visible-infrared sum-frequency spectroscopy from 900-3100 cm-1,” Appl. Spectrosc. 58, 1377-1384 (2004).
[CrossRef] [PubMed]

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

2001 (1)

D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: 3D infrared Raman spectroscopy,” Chem. Phys. 266, 149-166 (2001).
[CrossRef]

2000 (4)

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653-667 (2000).
[CrossRef]

I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

1999 (3)

1998 (4)

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998).
[CrossRef]

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283-1285 (1998).
[CrossRef]

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

1997 (3)

1995 (1)

1994 (1)

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

1993 (1)

1990 (1)

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

1987 (1)

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23, 59-64(1987).
[CrossRef]

1986 (1)

K. Kato, “Second-harmonic generation to 2048 A in beta-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

Alavi, D. S.

Atkinson, G. H.

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

Backus, S.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Baronio, F.

Beck, W.

Berg, M. A.

D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007).
[CrossRef] [PubMed]

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

Brida, D.

Cahill, D. G.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Capobianco, A. D.

Carter, J. A.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Cerullo, G.

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Challa, J. R.

Chen, C.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758-1764 (1993).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

Chen, C.-Y.

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

Cheng, J.-X.

X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595.
[CrossRef]

Cirmi, G.

Dasgupta, J.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

De Silvestri, S.

Deak, J. C.

Delaney, J. K.

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

Dlott, D. D.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
[CrossRef]

D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: 3D infrared Raman spectroscopy,” Chem. Phys. 266, 149-166 (2001).
[CrossRef]

J. C. Deak, L. K. Iwaki, and D. D. Dlott, “High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy,” Opt. Lett. 22, 1796-1798 (1997).
[CrossRef]

Du, S.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Fan, D.

Feng, B.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Frontiera, R. R.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

Gilch, P.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).

Greenfield, S. R.

Gunaratne, T. C.

Gutmann, M.

Hamamoto, M. Y.

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
[CrossRef]

Hartl, I.

I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).

Hore, D. K.

Huang, J. Y.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758-1764 (1993).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

Iwaki, L. K.

Ji, N.

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

Kapteyn, H. C.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Kato, K.

K. Kato, “Second-harmonic generation to 2048 A in beta-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

Kim, J.

L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

King, J. L.

Kitagawa, T.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997).
[CrossRef]

Kobayashi, T.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998).
[CrossRef]

Koh, Y. K.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Kruglik, S. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Kukura, P.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Lagarias, J. C.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

Lagutchev, A.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
[CrossRef]

Laimgruber, S.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Li, Q.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

Manzoni, C.

Marangoni, M.

Martinez, O. E.

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23, 59-64(1987).
[CrossRef]

Mathies, R. A.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Matousek, P.

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

McCamant, D. W.

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

McGuire, J. A.

Milliken, M.

Mizutani, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997).
[CrossRef]

Moore, F. G.

Muller, M.

M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

Murnane, M. M.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Nisoli, M.

Orlovich, V. A.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Ostroverkhov, V.

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

Parker, A. W.

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22,1494-1496 (1997).
[CrossRef]

Pigozzo, F. M.

Popp, A.

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

Potma, E. O.

X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595.
[CrossRef]

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Quintavalle, M.

Reisner, S.

Richmond, G. L.

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

T. Wilhelm, J. Piel, and E. Riedle, “Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22,1494-1496 (1997).
[CrossRef]

Schachenmayr, H.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

Schmidt, B.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

Seong, N. H.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Shaikh, W.

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

Shen, L.

Shen, Y. R.

Shen, Y.-R.

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

Shi, Y.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Shim, S.

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

Shirakawa, A.

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998).
[CrossRef]

Shvedko, A. G.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Simpson, M. C.

Sporlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

Stagira, S.

Stauffer, H. U.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Taylor, K. C.

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

Towrie, M.

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

Uesugi, Y.

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997).
[CrossRef]

Ujj, L.

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

Urbanek, D. C.

D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007).
[CrossRef] [PubMed]

Volodin, B. L.

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

Wang, Z. H.

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Wasielewski, M. R.

Wei, X.

Wilhelm, T.

Wu, B.

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

Xie, X. S.

X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595.
[CrossRef]

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Zhang, D.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Zhang, J. Y.

J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758-1764 (1993).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

Zhang, J.-y.

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653-667 (2000).
[CrossRef]

Zhu, L. Y.

L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Zinth, W.

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).

Zumbusch, A.

M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

P. Kukura, D. W. McCamant, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, “A femtosecond stimulated raman spectrograph for the near ultraviolet,” Appl. Phys. B 85, 557-564 (2006).
[CrossRef]

I. Hartl, P. Gilch, and W. Zinth, "Ultrafast redistribution of vibrational excitation of CH-stretching modes probed via anti-Stokes Raman scattering," Appl. Phys. B 71, 397-403(2000).

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B 71, 457-465 (2000).

Appl. Phys. Lett. (3)

A. Shirakawa and T. Kobayashi, “Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth” Appl. Phys. Lett. 72, 147-149 (1998).
[CrossRef]

J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961-1963 (1990).
[CrossRef]

S. Shim and R. A. Mathies, “Generation of narrow-bandwidth picosecond visible pulses from broadband femtosecond pulses for femtosecond stimulated Raman,” Appl. Phys. Lett. 89, 121124 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. (3)

L. Ujj, B. L. Volodin, A. Popp, J. K. Delaney, and G. H. Atkinson, “Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570,” Chem. Phys. 182, 291-311 (1994).
[CrossRef]

D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: 3D infrared Raman spectroscopy,” Chem. Phys. 266, 149-166 (2001).
[CrossRef]

Z. H. Wang, D. G. Cahill, J. A. Carter, Y. K. Koh, A. Lagutchev, N. H. Seong, and D. D. Dlott, “Ultrafast dynamics of heat flow across molecules,” Chem. Phys. 350, 31-34 (2008).
[CrossRef]

Chem. Phys. Chem. (1)

M. Muller and A. Zumbusch, "Coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

K. Kato, “Second-harmonic generation to 2048 A in beta-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23, 59-64(1987).
[CrossRef]

J. Am. Chem. Soc. (1)

N. Ji, V. Ostroverkhov, C.-Y. Chen, and Y.-R. Shen, “Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains,” J. Am. Chem. Soc. 129, 10056-10057 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

D. C. Urbanek and M. A. Berg, “Simultaneous time and frequency detection in femtosecond coherent Raman spectroscopy. I. Theory and model calculations,” J. Chem. Phys. 127, 044306 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. C (1)

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111, 13645-13647 (2007).
[CrossRef]

J. Raman Spectrosc. (3)

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31, 653-667 (2000).
[CrossRef]

L. Y. Zhu, J. Kim, and R. A. Mathies, “Picosecond time-resolved Raman system for studying photochemical reaction dynamics: application to the primary events in vision,” J. Raman Spectrosc. 30, 777-783 (1999).
[CrossRef]

Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitagawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

M. Towrie, A. W. Parker, W. Shaikh, and P. Matousek, “Tunable picosecond optical parametric generator-amplifier system for time resolved Raman spectroscopy,” Meas. Sci. Technol. 9, 816-823 (1998).
[CrossRef]

Opt. Commun. (1)

S. Du, D. Zhang, Y. Shi, Q. Li, B. Feng, and J.-y. Zhang, “Picosecond optical parametric amplification of stimulated Raman as high peak-power source and ultra-sensitive preamplifier,” Opt. Commun. 281, 5014-5018 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. USA (1)

J. Dasgupta, R. R. Frontiera, K. C. Taylor, J. C. Lagarias, and R. A. Mathies, “Ultrafast excited state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 1784-1789 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (4)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods,” Rev. Sci. Instrum. 75, 4971-4980 (2004).
[CrossRef]

Y. Uesugi, Y. Mizutani, and T. Kitagawa, “Developments of widely tunable light sources for picosecond time-resolved resonance Raman spectroscopy,” Rev. Sci. Instrum. 68, 4001-4008 (1997).
[CrossRef]

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Other (1)

X. S. Xie, J.-X. Cheng, and E. O. Potma, “Coherent anti-Stokes Raman scattering microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.Pawley, ed. (Springer, 2006), p. 595.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry and phase-matching conditions for (a) traditional femtosecond noncollinear OPAs (fs NOPA), and (b) the picosecond noncollinear OPA discussed in this work (ps NOPA). In each case the idler is passively generated by the amplification process at a range of wave vector angles that preserve the phase matching condition. In mathematical treatments of phase-matching θ PM , α and β are internal angles, within the BBO crystal, rather than the external angles depicted in this schematic.

Fig. 2
Fig. 2

Relationships of α, β, θ PM , and ρ versus the signal wavelength for a monochromatic signal and broadband 400 nm pump in a type I BBO ps NOPA.

Fig. 3
Fig. 3

Schematic of the ps NOPA experimental setup: BS, beam splitter; SD, sapphire disk.

Fig. 4
Fig. 4

Normalized spectra of the narrow- bandwidth pulses generated by the ps NOPA system.

Fig. 5
Fig. 5

Bandwidth and pulse energies of the ps NOPA system as a function of signal wavelength (circle and square markers, respectively). The dashed and dotted lines correspond respectively to the average bandwidth ( 27 cm 1 ) and energy ( 2 μJ ) of the plotted data points.

Fig. 6
Fig. 6

OKE cross-correlation trace between the NOPA pulse at 615 nm and the 400 nm femtosecond pulse. The fit to a Gaussian pulse shape is also shown (solid curve).

Tables (1)

Tables Icon

Table 1 Calculated Values of α, β, θ PM , and ρ at Various Signal Wavelengths for a Monochromatic Signal and Broadband 400 nm Pump in a Type I BBO ps NOPA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v s = v i cos ( α + β ) ,
v p = v i cos β .
Δ k = k s sin α k i sin β = 0 ,
Δ k = k p k s cos α k i cos β = 0.
1 n e ( θ PM ) 2 = sin 2 θ PM n e 2 + cos 2 θ PM n o 2 ,

Metrics