Abstract

We study the measurand-induced spectral shift of the photonic bandgap edge of a hollow-core photonic crystal fiber. The physical measurands considered are strain, temperature, curvature, and twist. A noticeable sensitivity to strain, temperature, and twist is observed, with a blueshift to increase strain and twist. An increase in temperature induces a redshift. On the other hand, curvature has no observable effect on the spectral position of the photonic bandgap edge.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
    [CrossRef]
  2. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576-9583 (2006).
    [CrossRef]
  3. Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
    [CrossRef]
  4. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
    [CrossRef]
  5. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669-18675 (2009).
    [CrossRef]
  6. I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
    [CrossRef]
  7. M. Pang and W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express 17, 11088-11097 (2009).
    [CrossRef]
  8. J. Sun and C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46-50 (2007).
  9. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap-guiding fibers,” Opt. Express 12, 69-74 (2004).
    [CrossRef]
  10. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000-3006 (2006).
    [CrossRef]
  11. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995), pp. 19-20.
  12. G. J. Pearce, J. M. Pottage, D. M. Bird, P. J. Roberts, J. C. Knight, and P. St. J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13, 6937-6946 (2005).
    [CrossRef]
  13. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .
  14. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
    [CrossRef]
  15. F. Benabid, “Hollow-core photonic bandgap fibre: New light guidance for new science and technology,” Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).
  16. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in aircore photonic band-gap fibers,” Opt. Express 12, 1485-1495 (2004).
    [CrossRef]
  17. F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Visualizing the photonic band gap in hollow core photonic crystal fibers,” Opt. Express 13, 558-563 (2005).
    [CrossRef]
  18. J.M.López-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002), Chap. 18.
  19. L. A. Ferreira, J. L. Santos, E. V. Diatzikis, and F. Farahi, “Frequency modulated multimode laser diode for fiber Bragg grating sensors,” J. Lightwave Technol. 16, 1620-1630(1998).
    [CrossRef]

2009

2008

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

2007

J. Sun and C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46-50 (2007).

2006

2005

2004

2001

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

1998

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in aircore photonic band-gap fibers,” Opt. Express 12, 1485-1495 (2004).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Amezcua-Correa, R.

Antonopoulos, G.

Araújo, F. M.

Aref, S. H.

Arregui, F. J.

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

Benabid, F.

Bird, D. M.

Bird, D. M.

Birks, T. A.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Birks, T. A.

Bise, R. T.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Blanchard, P. M.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Borrelli, N. F.

Burnett, J. G.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Caldas, P.

Carvalho, J. P.

Chan, C.

J. Sun and C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46-50 (2007).

Claus, R. O.

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

Corwin, K. L.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Diatzikis, E. V.

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Eggleton, B. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Farahi, F.

Farr, L.

Ferreira, L. A.

Frazão, O.

Gander, M. J.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Goya, R.

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

Greenaway, A. H.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Hedley, T. D.

Hidalgo, I.

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

Jin, W.

M. Pang and W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express 17, 11088-11097 (2009).
[CrossRef]

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995), pp. 19-20.

Jones, J. D. C.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Ju, J.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

Kerbage, C.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Knabe, K.

Knight, J. C.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Knight, J. C.

Koch, K. W.

Kranz, K. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Latifi, H.

MacPherson, W. N.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Mangan, B.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Mangan, B. J.

F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Visualizing the photonic band gap in hollow core photonic crystal fibers,” Opt. Express 13, 558-563 (2005).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Matías, I. R.

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

McBride, R.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995), pp. 19-20.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Pang, M.

Pearce, G. J.

Pottage, J. M.

Pottage, J. M.

Roberts, P. J.

Roberts, P. J.

F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Visualizing the photonic band gap in hollow core photonic crystal fibers,” Opt. Express 13, 558-563 (2005).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Russell, P. St. J.

Sabert, H.

Santos, J. L.

Smith, C. M.

Sun, J.

J. Sun and C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46-50 (2007).

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Thapa, R.

Tomlinson, A.

Trevor, D. J.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Wang, D. N.

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

Washburn, B. R.

West, J. A.

Williams, D. P.

Windeler, R. S.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995), pp. 19-20.

Wójcik, J.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wójcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796-1802 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fiber curvature sensor using multicore photonic crystal fiber,” Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Opt. Express

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669-18675 (2009).
[CrossRef]

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14, 9576-9583 (2006).
[CrossRef]

M. Pang and W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express 17, 11088-11097 (2009).
[CrossRef]

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap-guiding fibers,” Opt. Express 12, 69-74 (2004).
[CrossRef]

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. St. J. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14, 3000-3006 (2006).
[CrossRef]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in aircore photonic band-gap fibers,” Opt. Express 12, 1485-1495 (2004).
[CrossRef]

F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Visualizing the photonic band gap in hollow core photonic crystal fibers,” Opt. Express 13, 558-563 (2005).
[CrossRef]

G. J. Pearce, J. M. Pottage, D. M. Bird, P. J. Roberts, J. C. Knight, and P. St. J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express 13, 6937-6946 (2005).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

F. Benabid, “Hollow-core photonic bandgap fibre: New light guidance for new science and technology,” Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).

Proc. IEEE

I. Hidalgo, R. Goya, I. R. Matías, F. J. Arregui, and R. O. Claus, “Humidity evanescent hollow core fiber sensor,” Proc. IEEE 3, 1214-1217 (2004).
[CrossRef]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef]

Sens. Actuators B

Y. L. Hoo, W. Jin, H. L. Ho, J. Ju, and D. N. Wang, “Gas diffusion measurement using hollow-core photonic bandgap fiber,” Sens. Actuators B 105, 183-186 (2005).
[CrossRef]

J. Sun and C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46-50 (2007).

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, 1995), pp. 19-20.

J.M.López-Higuera, ed., Handbook of Optical Fiber Sensing Technology (Wiley, 2002), Chap. 18.

R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic bandgap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonic (Optical Society of America, 2002), pp. 466-468 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Transmission spectrum of the bandgap fiber considered for characterization of measurand-induced effects on the PBG edge and (b) optical microscope image of the cross section of the selected fiber.

Fig. 2
Fig. 2

Experimental setup for the characterization of the measurand-induced shift of the edge of the spectral bandgap; also shown is the configuration that was used to apply torsion and curvature to the HC PCF.

Fig. 3
Fig. 3

Effect of applied strain to the HC PCF on (a) the spectral position of the PBG lower wavelength edge, (b) the loss variation at wavelength 1509 nm located in the PBG edge, (c) the loss variation at wavelength 1525 nm located in the PBG passband region.

Fig. 4
Fig. 4

Effect of temperature variation on (a) the spectral position of the PBG lower wavelength edge, (b) the loss variation at wavelength 1508 nm located in the PBG edge, (c) the transmission versus temperature at wavelength 1525 nm located in the PBG passband region.

Fig. 5
Fig. 5

(a) PBG edge shift due to curvature variation and (b) transmission versus curvature at wavelengths of 1508 nm (located in the PBG edge region) and 1525 nm (located in the PBG passband region).

Fig. 6
Fig. 6

Effect of twist applied to the HC PCF on (a) the spectral position of the PBG lower wavelength edge, (b) the loss variation at wavelength 1507 nm located in the PBG edge, (c) the transmission versus twist at wavelength 1525 nm located in the PBG passband region.

Metrics