Abstract

A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre–Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lin, X.-C. Yuan, S. H. Tao, and R. Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt. 46, 4680-4685 (2007).
    [CrossRef]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
    [CrossRef]
  3. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
    [CrossRef]
  4. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991-4999 (2008).
    [CrossRef]
  5. G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
    [CrossRef]
  6. Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
    [CrossRef]
  7. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
    [CrossRef]
  8. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
    [CrossRef]
  9. A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
    [CrossRef]
  10. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  11. Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).
  12. D. Pal Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378-1383 (2008).
    [CrossRef]
  13. R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47, 6300-6306 (2008).
    [CrossRef]
  14. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548-3553 (2004).
    [CrossRef]
  15. L. J. Hornbeck, “From cathode rays to digital micromirrors: a history of electronic projection display technology,” Tex. Instrum. Tech. J. 7-46 (1998).
  16. C.-M. Chang and H.-P. D. Shieh, “Design of illumination and projection optics for projectors with single digital micromirror devices,” Appl. Opt. 39, 3202-3208 (2000).
    [CrossRef]
  17. Y. Lu and S. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92, 041109 (2008).
    [CrossRef]
  18. I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
    [CrossRef]
  19. M. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751-753 (1997).
    [CrossRef]
  20. N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005).
    [CrossRef]
  21. D. R. Collins, J. B. Sampsell, L. J. Hornbeck, J. M. Florence, P. A. Penz, and M. T. Gately, “Deformable mirror device spatial light modulators and their applicability to optical neural networks,” Appl. Opt. 28, 4900-4907 (1989).
    [CrossRef]
  22. E. P. Wagner, B. W. Smith, S. Madden, J. D. Winefordner, and M. Mignardi, “Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulator,” Appl. Spectrosc. 49, 1715-1719 (1995).
    [CrossRef]
  23. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Dynamic axial-position control of a laser-trapped particle by wavefront modification,” Opt. Lett. 28, 465-467 (2003).
    [CrossRef]
  24. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
    [CrossRef]
  25. A. A. Adeyemi, N. Barakat, and T. E. Darcie, “Application of digital micro-mirror devices to digital optical microscope dynamic range enhancement,” Opt. Express 17, 1831-1843 (2009).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
  27. L. G. Schulz, “The optical constants of silver, gold, copper, and aluminum. i. The absorption coefficient k,” J. Opt. Soc. Am. 44, 357-362 (1954).
    [CrossRef]
  28. L. G. Schulz and F. R. Tangherlini, “Optical constants of silver, gold, copper, and aluminum. ii. The index of refraction n,” J. Opt. Soc. Am. 44, 362-368 (1954).
    [CrossRef]

2010 (1)

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

2009 (3)

2008 (6)

2007 (1)

2006 (1)

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

2005 (1)

N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005).
[CrossRef]

2004 (1)

2003 (2)

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Dynamic axial-position control of a laser-trapped particle by wavefront modification,” Opt. Lett. 28, 465-467 (2003).
[CrossRef]

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

2000 (1)

1998 (1)

L. J. Hornbeck, “From cathode rays to digital micromirrors: a history of electronic projection display technology,” Tex. Instrum. Tech. J. 7-46 (1998).

1997 (1)

1995 (2)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

E. P. Wagner, B. W. Smith, S. Madden, J. D. Winefordner, and M. Mignardi, “Construction and evaluation of a visible spectrometer using digital micromirror spatial light modulator,” Appl. Spectrosc. 49, 1715-1719 (1995).
[CrossRef]

1989 (1)

1954 (2)

Adeyemi, A. A.

Barakat, N.

Bernet, S.

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
[CrossRef]

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Bitte, F.

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Booth, M. J.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).

Burge, R.

Chang, C.-M.

Chen, G. X.

G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
[CrossRef]

Chen, M.

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

Chen, S.

Y. Lu and S. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Collins, D. R.

Darcie, T. E.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dholakia, K.

Dienerowitz, M.

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Florence, J. M.

Fu, S. J.

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Fu¨rhapter, S.

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Gately, M. T.

Ghauri, F. N.

N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005).
[CrossRef]

Grier, D. G.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Hein, B.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Hell, S. W.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Hornbeck, L. J.

Jakobs, S.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Jesacher, A.

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
[CrossRef]

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Juškaitis, R.

Kawata, S.

Kellner, R. R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Krause, A. W.

Krauss, T. F.

Krohne, I.

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Li, H.

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

Li, Y. M.

G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
[CrossRef]

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Li, Y.-M.

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

Liang, M.

Lin, J.

Lu, Y.

Y. Lu and S. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Madden, S.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

Maurer, C.

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
[CrossRef]

Mazilu, M.

Medda, R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Meier, R.

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Mignardi, M.

Miyaji, G.

Miyanaga, N.

Nakatsuka, M.

Neil, M. A. A.

Ota, T.

Pal Ghai, D.

Penz, P. A.

Pfeifer, T.

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Reece, P. J.

Ren, Y. X.

G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
[CrossRef]

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Ren, Y.-X.

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

Ritsch-Marte, M.

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
[CrossRef]

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Riza, N. A.

N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

Sampsell, J. B.

Schulz, L. G.

Schwaighofer, A.

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16, 4479-4486 (2008).
[CrossRef]

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Scipioni, M.

Senthilkumaran, P.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Shieh, H.-P. D.

Sirohi, R. S.

Smith, B. W.

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Stehr, R. L.

Sueda, K.

Sugiura, T.

Sun, Q.

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Tangherlini, F. R.

Tao, S. H.

Tyson, R. K.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

Viegas, J.

Wagner, E. P.

Wang, Z. Q.

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

Willig, K. I.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Wilson, T.

Winefordner, J. D.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).

Wu, J. G.

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Wu, J.-G.

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

Yuan, X.-C.

Zacher, M.

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

Zhan, Q.

Zhou, J. H.

G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
[CrossRef]

Zhou, X. W.

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

Adv. Opt. Photon. (1)

Appl. Opt. (5)

Appl. Phys. Lett. (1)

Y. Lu and S. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92, 041109 (2008).
[CrossRef]

Appl. Spectrosc. (1)

Chin. Phys. Lett. (1)

Y.-X. Ren, J.-G. Wu, M. Chen, H. Li, and Y.-M. Li, “Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate,” Chin. Phys. Lett. 27, 028703 (2010).
[CrossRef]

J. Mod. Opt. (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995).
[CrossRef]

J. Opt. Soc. Am. (2)

Laser Optoelectron. Prog. (1)

G. X. Chen, J. H. Zhou, Y. X. Ren, and Y. M. Li, “Manipulating metallic particles using optical tweezers,” Laser Optoelectron. Prog. 46, 32-38 (2009) (in Chinese).
[CrossRef]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
[CrossRef]

Nature Methods (1)

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, “Nanoscale resolution in GFP-based microscopy,” Nature Methods 3, 721-723 (2006).
[CrossRef]

Opt. Commun. (1)

A. Jesacher, C. Maurer, S. Fu¨rhapter, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Optical tweezers of programmable shape with transverse scattering forces,” Opt. Commun. 2207-2212 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (1)

I. Krohne, T. Pfeifer, F. Bitte, M. Zacher, and R. Meier, “New method for confocal microscopy and its endoscopic application,” Proc. SPIE 5143, 281-288 (2003).
[CrossRef]

Rev. Sci. Instrum. (2)

N. A. Riza and F. N. Ghauri, “Super-resolution variable fiber optic attenuator instrument using digital micromirror device (DMDtrade),” Rev. Sci. Instrum. 76, 095102 (2005).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Tex. Instrum. Tech. J. (1)

L. J. Hornbeck, “From cathode rays to digital micromirrors: a history of electronic projection display technology,” Tex. Instrum. Tech. J. 7-46 (1998).

Other (2)

Y. X. Ren, J. G. Wu, X. W. Zhou, S. J. Fu, Q. Sun, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate,” Acta Phys. Sin. 59, 139-144 (2010).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. The He–Ne laser with wavelength 633 nm is used as the laser source. The collimated laser beam is illuminated onto the DMD with incident angle of 24 ° . The DMD modulates the laser profile by imprinting a specific intensity pattern on the device through a computer connected to the DMD electronic board. A lens projects the modulated laser beam onto the detector. Inset at top left illustrates the working statuses of the individual mirror. The light reflected by the mirror in “off” state is collected by a heat sink.

Fig. 2
Fig. 2

Response of the projected laser intensity to the input gray scale of loaded images: (a) uncorrected gamma curve and (b) corrected gamma curve.

Fig. 3
Fig. 3

Typical pulses showing laser energy diffracted from uniform images with gray scales of 1, 50, 150, and 210.

Fig. 4
Fig. 4

Computer-generated forklike gratings with different topological charges. The first and second rows indicate the uncorrected and corrected images correspondingly.

Fig. 5
Fig. 5

Transversal intensity distribution of an LG beam diffracted from forklike gratings with different topological charges (from left to right). Images in top row illustrate the results without correction to the forklike gratings, while those at the bottom show the distributions with correction to the projected images.

Fig. 6
Fig. 6

Diffraction energy of the LG beam with respect to topological charge l diffracted from corrected images (solid squares) and uncorrected images (solid circles).

Fig. 7
Fig. 7

Polar diagram of generated LG beam with topological charge l = 1 . Incident beam is (a) horizontally polarized and (b) vertically polarized.

Fig. 8
Fig. 8

P and Δ vary with respect to the incident angle.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

LG p l ( r , ϕ , z ) = C p l ω ( z ) exp [ r 2 ω 2 ( z ) i k r 2 2 R ( z ) + i Φ p l ( z ) + i l ϕ ] × ( 2 r ω ( z ) ) l L p l ( 2 r 2 ω 2 ( z ) ) ,
P = T f ( g ) ,
P corr = T f ( C ( g ) ) a g + b ,
I = | exp ( i l ϕ ) + exp ( i k x x ) | 2 = 2 + 2 cos ( l ϕ + k x x ) .
R = tan ( θ i θ t ) tan ( θ i + θ t ) A ,
R = sin ( θ i θ t ) sin ( θ i + θ t ) A ,
r = R A = ρ exp [ i ϕ ] ,
r = R A = ρ exp [ i ϕ ] .
tan α i = A A ,
tan α r = R R = cos ( θ i θ t ) cos ( θ i + θ t ) tan α i = P e i Δ tan α i ,

Metrics