Abstract

Adaptive optics (AO) systems installed at large ground-based telescopes partially correct Earth’s atmosphere, making post facto image reconstruction techniques necessary to produce diffraction-limited observations. To achieve accurate photometry in the reconstructed images, some post facto techniques require knowledge of transfer functions that describe the optical system. I present a new, fast method for the estimation of the long-exposure and speckle transfer functions from data gathered by a solar AO system simultaneously with the observations. The results of the presented method are tested with extensive analytical models, demonstrating that the estimation is robust for situations where the AO system is performing with Strehl ratios larger than 45%. Application to observations of solar granulation produces reconstructed images that are photometrically in agreement with earlier results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
    [CrossRef]
  2. O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
    [CrossRef]
  3. T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
    [CrossRef]
  4. R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
    [CrossRef]
  5. M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
    [CrossRef]
  6. K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974).
    [CrossRef]
  7. G. P. Weigelt, “Speckle interferometry and image reconstruction,” in International Astronomical Union Colloquium 50: High Angular Resolution Stellar Interferometry, J.Davis and W.J.Tango, eds. (University of Sydney, 1979), p. 33-1.
  8. J.-P. Veran, F. Rigaut, H. Maitre, and D. Rouan, “Estimation of the adaptive optics long-exposure point-spread function using control loop data,” J. Opt. Soc. Am. A 14, 3057-3069 (1997).
    [CrossRef]
  9. E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
    [CrossRef]
  10. J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
    [CrossRef]
  11. D. Korff, “Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence,” J. Opt. Soc. Am. 63, 971-980 (1973).
    [CrossRef]
  12. K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006).
    [CrossRef]
  13. C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
    [CrossRef]
  14. K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006).
    [CrossRef]
  15. F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007).
    [CrossRef] [PubMed]
  16. D. L. Fried, “Optical Resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966).
    [CrossRef]
  17. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174-1180 (1990).
    [CrossRef]
  18. J. Marino, Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. dissertation (New Jersey Institute of Technology, 2007), marinoj@nso.edu.
  19. F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009).
    [CrossRef]
  20. G.-M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions,” J. Opt. Soc. Am. A 13, 1218-1225 (1996).
    [CrossRef]
  21. F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
    [CrossRef]
  22. M. C. Britton, “The anisoplanatic point-spread function in adaptive optics,” Publ. Astron. Soc. Pac. 118, 885-900 (2006).
    [CrossRef]

2009 (1)

F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009).
[CrossRef]

2008 (1)

F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
[CrossRef]

2007 (3)

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007).
[CrossRef] [PubMed]

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

2006 (5)

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
[CrossRef]

K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006).
[CrossRef]

K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006).
[CrossRef]

M. C. Britton, “The anisoplanatic point-spread function in adaptive optics,” Publ. Astron. Soc. Pac. 118, 885-900 (2006).
[CrossRef]

2005 (1)

M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
[CrossRef]

2004 (1)

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

2003 (2)

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

1974 (1)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974).
[CrossRef]

1973 (1)

1966 (1)

Berkefeld, T.

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

Britton, M. C.

M. C. Britton, “The anisoplanatic point-spread function in adaptive optics,” Publ. Astron. Soc. Pac. 118, 885-900 (2006).
[CrossRef]

Christou, J.

J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
[CrossRef]

Clénet, Y.

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

Dai, G.-M.

Deng, N.

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

Denker, C.

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

Denker, C. J.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Dettori, P. M.

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

Didkovsky, L. V.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Dolgushin, A.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Fletcher, S.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Fried, D. L.

Fusco, T.

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

Gendron, E.

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

Georges, J. A.

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Gleichman, K. W.

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Goode, P. R.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Gregory, S.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Hegwer, S.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Knox, K. T.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974).
[CrossRef]

Korff, D.

Langlois, M.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Lofdahl, M. G.

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

Löfdahl, M. G.

M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
[CrossRef]

Maitre, H.

Marino, J.

J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
[CrossRef]

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

J. Marino, Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. dissertation (New Jersey Institute of Technology, 2007), marinoj@nso.edu.

Marquette, W.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Mikurda, K.

K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006).
[CrossRef]

Moretto, G.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Murphy, R. J.

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Paxman, R. G.

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Puschmann, K. G.

K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006).
[CrossRef]

Reardon, K.

F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
[CrossRef]

Richards, K.

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Rigaut, F.

Rimmele, T.

F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009).
[CrossRef]

J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
[CrossRef]

Rimmele, T. R.

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

Rouan, D.

Rousset, G.

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

Sailer, M.

K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006).
[CrossRef]

Scharmer, G. B.

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

Schelenz, T.

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

Shand, M.

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

Soltau, D.

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

Thelen, B. J.

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Thompson, B. J.

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974).
[CrossRef]

Tritschler, A.

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

van der Voort, L. R.

M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
[CrossRef]

van Noort, M.

M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
[CrossRef]

Veran, J.-P.

Verdoni, A.

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

von der Lühe, O.

F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
[CrossRef]

F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007).
[CrossRef] [PubMed]

K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006).
[CrossRef]

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

Weigelt, G. P.

G. P. Weigelt, “Speckle interferometry and image reconstruction,” in International Astronomical Union Colloquium 50: High Angular Resolution Stellar Interferometry, J.Davis and W.J.Tango, eds. (University of Sydney, 1979), p. 33-1.

Wöger, F.

F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009).
[CrossRef]

F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
[CrossRef]

F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

F. Wöger and O. von der Lühe, “Field dependent amplitude calibration of adaptive optics supported solar speckle imaging,” Appl. Opt. 46, 8015-8026 (2007).
[CrossRef] [PubMed]

F. Wöger and T. Rimmele, “Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor,” Appl. Opt. 48, A26-A46 (2009).
[CrossRef]

Astron. Astrophys. (3)

F. Wöger, O. von der Lühe, and K. Reardon, “Speckle interferometry with adaptive optics corrected solar data,” Astron. Astrophys. 488,375-381 (2008).
[CrossRef]

K. G. Puschmann and M. Sailer, “Speckle reconstruction of photometric data observed with adaptive optics,” Astron. Astrophys. 454, 1011-1019 (2006).
[CrossRef]

E. Gendron, Y. Clénet, T. Fusco, and G. Rousset, “New algorithms for adaptive optics point-spread function reconstruction,” Astron. Astrophys. 457, 359-363 (2006).
[CrossRef]

Astrophys. J. (1)

K. T. Knox and B. J. Thompson, “Recovery of images from atmospherically degraded short-exposure photographs,” Astrophys. J. 193, L45-L48 (1974).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174-1180 (1990).
[CrossRef]

Proc. SPIE (5)

J. Marino, T. Rimmele, and J. Christou, “Long exposure point spread function estimation from adaptive optics loop data: validation and results,” Proc. SPIE 6272, 62723W (2006.
[CrossRef]

G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, and M. Shand, “Adaptive optics system for the new Swedish solar telescope,” Proc. SPIE 4853, 370-380 (2003.
[CrossRef]

O. von der Lühe, D. Soltau, T. Berkefeld, and T. Schelenz, “KAOS: Adaptive optics system for the Vacuum Tower Telescope at Teide Observatory,” Proc. SPIE 4853, 187-193(2003.
[CrossRef]

T. R. Rimmele, K. Richards, S. Hegwer, S. Fletcher, S. Gregory, G. Moretto, L. V. Didkovsky, C. J. Denker, A. Dolgushin, P. R. Goode, M. Langlois, J. Marino, and W. Marquette, “First results from the NSO/NJIT solar adaptive optics system,” Proc. SPIE 5171, 179-186 (2004.
[CrossRef]

R. G. Paxman, B. J. Thelen, R. J. Murphy, K. W. Gleichman, and J. A. Georges III, “Phase-diverse adaptive optics for future telescopes,” Proc. SPIE 6711, 671103 (2007.
[CrossRef]

Publ. Astron. Soc. Pac. (1)

M. C. Britton, “The anisoplanatic point-spread function in adaptive optics,” Publ. Astron. Soc. Pac. 118, 885-900 (2006).
[CrossRef]

Sol. Phys. (3)

M. van Noort, L. R. van der Voort, and M. G. Löfdahl, “Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity,” Sol. Phys. 228, 191-215 (2005).
[CrossRef]

K. Mikurda and O. von der Lühe, “High resolution solar speckle imaging with the extended Knox-Thompson algorithm,” Sol. Phys. 235, 31-53 (2006).
[CrossRef]

C. Denker, N. Deng, T. R. Rimmele, A. Tritschler, and A. Verdoni, “Field-dependent adaptive optics correction derived with the spectral ratio technique,” Sol. Phys. 241, 411-426 (2007).
[CrossRef]

Other (2)

J. Marino, Long exposure point spread function estimation from solar adaptive optics loop data. Ph.D. dissertation (New Jersey Institute of Technology, 2007), marinoj@nso.edu.

G. P. Weigelt, “Speckle interferometry and image reconstruction,” in International Astronomical Union Colloquium 50: High Angular Resolution Stellar Interferometry, J.Davis and W.J.Tango, eds. (University of Sydney, 1979), p. 33-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Input efficiencies: the solid curve represents the correction performance of N = 65 KL modes in a normal situation at solar telescopes, whereas the dashed curve represents a bad correction.

Fig. 2
Fig. 2

LETFs computed from full numerical integration (gray curve) and the proposed method (black curve). Three seeing conditions were assumed: α = 0.02 (solid curves), α = 0.1 (short dashes) and α = 0.18 (long dashes). The diffraction limited MTF is displayed as the curve with long dashes and triple short dashes. (a) Normal correction and (b) bad correction.

Fig. 3
Fig. 3

Square root of STFs, computed from full numerical integration (gray curves) and the proposed method (black curves). Three seeing conditions were assumed: α = 0.02 (solid curves), α = 0.1 (short dashes) and α = 0.18 (long dashes). The diffraction limited MTF is displayed as the curve with long dashes and triple short dashes. (a) Normal correction and (b) bad correction.

Fig. 4
Fig. 4

(a) 2D STF computed from measured wavefront sensor data and (b) its azimuthal average.

Fig. 5
Fig. 5

(a) Speckle image reconstruction of solar granulation in the Fraunhofer G-band using the STF displayed in Fig. 4 computed with the method presented in this work. (b) Plot of reconstruction rms contrast versus α = r 0 / D .

Fig. 6
Fig. 6

Integrated relative error of the suggested estimation method versus AO residual error. The solid curve indicates the integrated relative error of the LETF, the dashed curve that of the STF. (a) Normal correction and (b) bad correction.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

W ( r ) = { 1 π if     | r | D / 2 0 if     | r | > D / 2
F ± F ( r ± 1 2 s ) ,
S ( s ) = d r W + W × exp [ 1 2 D ( s ) + K ( r , s ) + L ( r , s ) ] .
K ( r , s ) = i = 2 N j = 2 N β j ( 1 1 2 β i ) a i a j × ( F i + F i ) ( F j + F j ) ,
L ( r , s ) = i = N + 1 j = 2 N β j a i a j × ( F i + F i ) ( F j + F j )
I = d r W ( r ) exp [ G ( r ) ] ,
G ( r ) ¯ = d r W ( r ) G ( r ) d r W ( r ) ,
I = d r W ( r ) exp [ ( G r ) ] exp [ G ( r ) ¯ ] .
S ( s ) = exp [ 1 2 D ( s ) ] × exp [ i = 2 N j = 2 N β j ( 1 1 2 β i ) a i a j U i j ( s ) ] × exp [ i = N + 1 j = 2 N β j a i a j U i j ( s ) ] × d r W + W .
U i j ( s ) = d r W + W ( F i + F i ) ( F j + F j ) d r W + W = 1 / Γ ( W , W ) × [ Γ ( W F i F j , W ) Γ ( W F i , W F j ) Γ ( W F j , W F i ) + Γ ( W , W F i F j ) ] ,
F ± F ( r ± 1 2 s ) ,
| S ( s ) | 2 = d r d r W + W W + W × exp [ D ( s ) D ( Δ r ) + 1 2 { D ( Δ r + s ) + D ( Δ r s ) } + K ( r , s ) + L ( r , s ) + K ( r , s ) + L ( r , s ) K ˜ ( r , r , s ) L ˜ ( r , r , s ) K ˜ ( r , r , s ) L ˜ ( r , r , s ) ] ,
K ˜ ( r , r , s ) = i = 2 N j = 2 N β j ( 1 1 2 β i ) a i a j × ( F i + F i ) ( F j + F j ) ,
L ˜ ( r , r , s ) = i = N + 1 j = 2 N β j a i a j × ( F i + F i ) ( F j + F j ) .
I = d r d r W ( r ) W ( r ) exp [ G ( r , r ) ] exp [ G ( r , r ) ¯ ] ,
G ( r , r ) ¯ = d r d r W ( r ) W ( r ) G ( r , r ) d r d r W ( r ) W ( r ) .
T i j ( s ) = d r d r W + W W + W ( F i + F i ) ( F j + F j ) d r d r W + W W + W = 1 / Γ ( W , W ) 2 × [ ( Γ ( W F i , W ) Γ ( W , W F i ) ) × ( Γ ( W F j , W ) Γ ( W , W F j ) ) ] .
| S ( s ) | 2 = exp [ 1 2 D ( s ) ] × exp [ D ( Δ r ) + 1 2 { D ( Δ r + s ) + D ( Δ r s ) } ¯ ] × exp [ 2 i = 2 N j = 2 N β j ( 1 1 2 β i ) a i a j ( U i j ( s ) T i j ( s ) ) ] × exp [ 2 i = N + 1 j = 2 N β j a i a j ( U i j ( s ) T i j ( s ) ] d r d r W + W W + W .
C true C measured C noise + C alias ,
C = D + D ,
C alias = C C , atm C T ,
β i = 1 σ i ,   res 2 / σ i , atm 2 .
ϵ = d s | F full ( s ) F pres ( s ) | / d s F full ( s ) ,
σ res 2 0.8 [ rad 2 ] ,

Metrics