Abstract

To increase the understanding of the damage sensitivity of nodular defects and provide exact evidence for theoretical study, the structures and the damage behavior of nodular defects in electron-beam deposited mirrors of HfO2/SiO2 are systemically investigated with a double-beam microscope (focused ion beam, scanning electron microscope). Nodular defects are classified into two kinds. In one kind the boundaries between nodules and the surrounding layers have become continuous for the last deposited materials, and in the other there are discontinuous boundaries between nodules and the surrounding layers. Nodular defects of the first kind typically have low domes, and the second have high domes. Laser damage experiments show that nodular defects of the first kind usually have a high laser resistance, and the laser-induced damage thresholds are limited in the second class of nodules. The dominant pa rameter of nodular defects related to damage is the height of the nodular defect.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
    [CrossRef]
  2. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).
  3. M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).
  4. M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).
  5. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594-1601 (2006).
    [CrossRef]
  6. Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
    [CrossRef]
  7. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47, C162-C166 (2008).
    [CrossRef]
  8. X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
    [CrossRef]
  9. R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).
  10. J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).
  11. M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
    [CrossRef]
  12. M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)
  13. A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)
  14. “Lasers and laser-related equipment--determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test,” ISO 11254-1:2000 (International Organization for Standardization).
  15. F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439-448 (1996).
  16. K. H. Guenther, “Nodular defects in dielectric multilayers and thick single layers,” Appl. Opt. 20, 1034-1038 (1981).
    [CrossRef]

2009

X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
[CrossRef]

2008

2007

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

2006

2001

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

1999

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

1996

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439-448 (1996).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

1995

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).

1994

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

1993

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
[CrossRef]

1981

Balooch, M.

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

Chen, W.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

Chow, R.

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

DeFord, J. F.

M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
[CrossRef]

Dijon, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

Falabella, S.

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

Fan, Z. X.

X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
[CrossRef]

Feit, M. D.

Fomier, A.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

Garrec, P.

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

Génin, F. Y.

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439-448 (1996).

Gu, P.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

Guenther, K. H.

Hue, J.

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).

Kozlowski, M. R.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
[CrossRef]

Ling, X. L.

X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
[CrossRef]

Liu, X.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

Loomis, G. E.

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

Lyan, P.

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

Papandrew, A. B.

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

Pistor, T. V.

Poulingue, M.

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).

Sawicki, R. H.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).

Shang, C. C.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).

Shao, J. D.

X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
[CrossRef]

Siekhaus, W. J.

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

Staggs, M. C.

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
[CrossRef]

Stolz, C. J.

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47, C162-C166 (2008).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594-1601 (2006).
[CrossRef]

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439-448 (1996).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

Swatloski, T. L.

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).

Tench, R. J.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

Wang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

Wu, Z.

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

Zhang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

AIP Conf. Proc.

M. R. Kozlowski, J. F. DeFord, and M. C. Staggs, “Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling,” AIP Conf. Proc. 288, 44-49 (1993).
[CrossRef]

Appl. Opt.

J. Vac. Sci. Technol. A

X. L. Ling, J. D. Shao, and Z. X. Fan, “Thermal-mechanical modeling of nodular defect embedded within multilayer coatings,” J. Vac. Sci. Technol. A 27, 183-186 (2009).
[CrossRef]

R. J. Tench, R. Chow, and M. R. Kozlowski, “Defect geometries in multilayer optical coationgs,” J. Vac. Sci. Technol. A 12, 2808-2813 (1994).
[CrossRef]

Opt. Commun.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317-320(2007).
[CrossRef]

Proc. SPIE

F. Y. Génin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439-448 (1996).

R. H. Sawicki, C. C. Shang, and T. L. Swatloski, “Failure characterization of nodular defects in multilayer dielectric coatings,” Proc. SPIE 2428, 333-342 (1995).

J. Dijon, M. Poulingue, and J. Hue, “Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection,” Proc. SPIE 3578, 387-396 (1999).

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fomier, “Comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374-382 (1996).

M. R. Kozlowski and R. Chow, “Role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640-649 (1994).

M. C. Staggs, M. R. Kozlowski, W. J. Siekhaus, and M. Balooch, “Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy,” Proc. SPIE 1848234-242 (1993).

M. Poulingue, J. Dijon, P. Garrec, and P.Lyan“1.06-μm laser irradiation on high-reflection coatings inside a scanning electron microscope,” Proc. SPIE 3578, 188-195 (1999)

A. B. Papandrew, C. J. Stolz, Z. WuG. E. Loomis, and S. Falabella, “Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy,” Proc. SPIE 4347, 53-61 (2001)

Other

“Lasers and laser-related equipment--determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test,” ISO 11254-1:2000 (International Organization for Standardization).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Facility for laser-induced damage threshold test.

Fig. 2
Fig. 2

Typical cross sections of nodular defects formed by seeds with different sizes and depths.

Fig. 3
Fig. 3

Laser-induced damage thresholds of these samples.

Fig. 4
Fig. 4

Typical damage morphology around the laser-induced damage threshold.

Fig. 5
Fig. 5

Nodular defects (a) before and (b) after laser irradiation.

Fig. 6
Fig. 6

Damage morphologies of nodular defects 1 and 2 in Fig. 5b obtained by a SEM.

Fig. 7
Fig. 7

(a) (b), Cross sections of undamaged nodular defects in Fig. 2b. (c) Local view of (a); and the four block areas in (a) correspond to those in (c).

Fig. 8
Fig. 8

Morphologies of nodular defects taken by SEM.

Fig. 9
Fig. 9

Cross-section image of a nodular defect taken by FIB.

Metrics