Abstract

We provide detailed quantitative characterization of sulfonic bisazodye SD1 as a photoalignment material for photonics applications. The reversibility of photoalignment was tested for transformations between planar and 90° twist orientation states in a liquid crystal (LC) cell using polarized UV light. No degradation was observed for 100 cycles of transformations. A given twist angle of the LC orientation was obtained in a single step, as well as in a sequence of gradually increasing angles. A hysteresis is revealed in the latter case for planar–twist–planar cycles. The material was used for obtaining patterned orientation of a LC polymer providing similarly good quality photoalignment for UV as well as visible light. High efficiency large area and high spatial frequency optical axis gratings (or, polarization gratings) were demonstrated on a polycarbonate substrate. We show the opportunity of obtaining photoalignment in a multilayer system with single exposure to a polarized light. Finally, we provide evidence of a positive feedback in the dynamics of photoalignment due to the orientational effect of an increasing number of aligned molecules.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).
  2. K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847-1873 (2000).
    [CrossRef]
  3. K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).
  4. M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
    [CrossRef]
  5. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
    [CrossRef]
  6. F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
    [CrossRef]
  7. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
    [CrossRef] [PubMed]
  8. M. Schadt and K. Schmitt, “Flat liquid crystal projectors with integrated cholesteric color filters/polarizers and photo-aligned optical retarders,” in Society for Information Display Proceedings of International Display Research Conference(Society for Information Display, 1997), Vol. IDRC97, 219-222.
  9. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  10. M. J. Escuti and W. M. Jones, “Polarization independent switching with high contrast from a liquid crystal polarization grating,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1443-1446.
  11. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
    [CrossRef]
  12. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
    [CrossRef]
  13. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
    [CrossRef]
  14. Y. Y. Tzeng, S. W. Ke, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768-3775(2008).
    [CrossRef] [PubMed]
  15. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
    [CrossRef]
  16. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007).
    [CrossRef] [PubMed]
  17. G. A. Swartzlander Jr., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497-499 (2001).
    [CrossRef]
  18. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792-3805(2006).
    [CrossRef] [PubMed]
  19. I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
    [CrossRef]
  20. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12, 5475-5480 (2004).
    [CrossRef] [PubMed]
  21. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351-1353 (2002).
    [CrossRef]
  22. K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
    [CrossRef]
  23. V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.
  24. V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
    [CrossRef]
  25. O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
    [CrossRef]
  26. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558-10564 (2006).
    [CrossRef] [PubMed]
  27. X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.
  28. A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.
  29. Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
    [CrossRef]
  30. V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.
  31. S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006).
    [CrossRef]

2009

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

2008

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Y. Y. Tzeng, S. W. Ke, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768-3775(2008).
[CrossRef] [PubMed]

2007

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007).
[CrossRef] [PubMed]

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

2006

S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
[CrossRef]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792-3805(2006).
[CrossRef] [PubMed]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558-10564 (2006).
[CrossRef] [PubMed]

2004

2002

D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351-1353 (2002).
[CrossRef]

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

2001

2000

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847-1873 (2000).
[CrossRef]

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
[CrossRef]

1996

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
[CrossRef]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
[CrossRef] [PubMed]

1995

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

1989

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
[CrossRef]

1987

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

Akiyama, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Asatryan, K.

Au, Ping T.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Bernet, S.

Chigrinov, V.

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558-10564 (2006).
[CrossRef] [PubMed]

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

Chigrinov, V. G.

V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Cooper, J.

Courtial, J.

Dabrowski, R.

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

Escuti, M. J.

M. J. Escuti and W. M. Jones, “Polarization independent switching with high contrast from a liquid crystal polarization grating,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1443-1446.

Fuh, A. Y. G.

Fürhapter, S.

Galstian, T.

Gan, J.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Gan, X.

Ganic, D.

Gu, M.

Hain, M.

Hasebe, H.

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

Hasegawa, M.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Hasegawa, R.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Ho, J.

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

Ichimura, K.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847-1873 (2000).
[CrossRef]

Itoh, N.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Jacobs, S. D.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Jesacher, A.

Jones, W. M.

M. J. Escuti and W. M. Jones, “Polarization independent switching with high contrast from a liquid crystal polarization grating,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1443-1446.

Jordan, P.

Kawara, T.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Ke, S. W.

Kelly, S. M.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

Kimball, B.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Koden, M.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Kozenkov, V.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

Kwok, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Kwok, H. S.

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Laczik, Z. J.

Li, X.

A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Lin, T. H.

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Liu, Z.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
[CrossRef]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
[CrossRef]

Marshall, K. L.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Maurer, C.

Mitchell, G.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Moia, F.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
[CrossRef]

Murauski, A.

A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.

Muravsky, A.

A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Nishiyama, I.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
[CrossRef]

Otani, Y.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

Padgett, M.

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
[CrossRef]

Papernov, S.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Prudnikova, E.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Raszewski, Z.

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

Ren, H.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Rigatti, A. L.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Ritsch-Marte, M.

Sakamoto, M.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
[CrossRef]

Schadt, M.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
[CrossRef]

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
[CrossRef]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
[CrossRef] [PubMed]

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

M. Schadt and K. Schmitt, “Flat liquid crystal projectors with integrated cholesteric color filters/polarizers and photo-aligned optical retarders,” in Society for Information Display Proceedings of International Display Research Conference(Society for Information Display, 1997), Vol. IDRC97, 219-222.

Schmid, A. W.

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Schmitt, K.

M. Schadt and K. Schmitt, “Flat liquid crystal projectors with integrated cholesteric color filters/polarizers and photo-aligned optical retarders,” in Society for Information Display Proceedings of International Display Research Conference(Society for Information Display, 1997), Vol. IDRC97, 219-222.

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
[CrossRef]

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

Schwaighofer, A.

Seiberle, H.

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
[CrossRef]

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
[CrossRef]

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

Serak, S.

S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006).
[CrossRef]

Sinclair, G.

Somalingam, S.

Stalder, M.

Stankovic, S.

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Stolarzowa, Z.

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

Swartzlander, G. A.

Tabiryan, N.

S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006).
[CrossRef]

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Takada, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

Takatoh, K.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

Takatsu, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

Ting, C. L.

Tschudi, T.

Tzeng, Y. Y.

Umeda, N.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

Xu, P.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
[CrossRef]

Yaroshchuk, O.

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

Yoshida, N.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

Zmija, J.

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

Appl. Phys. Lett.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
[CrossRef]

Chem. Rev.

K. Ichimura, “Photoalignment of liquid-crystal systems,” Chem. Rev. 100, 1847-1873 (2000).
[CrossRef]

Cryst. Res. Technol.

Z. Raszewski, R. Dabrowski, Z. Stolarzowa, and J. Zmija, “Dielectric studies on binary mixtures containing 4-trans-4-n-hexyl-cyclohexyl-isothiocyanato-benzene,” Cryst. Res. Technol. 22, 835-844 (1987).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1-47 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

M. Schadt, H. Seiberle, A. Schuster, and S. M. Kelly, “Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters,” Jpn. J. Appl. Phys. 34, 3240-3249(1995).
[CrossRef]

O. Yaroshchuk, J. Ho, V. Chigrinov, and H. S. Kwok, “Azodyes as photoalignment agents for polymerizable liquid crystals,” Jpn. J. Appl. Phys. 46, 2995-2998 (2007).
[CrossRef]

Jpn. J. Appl. Phys. Part 1

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. Part 1 28, 1730-1731 (1989).
[CrossRef]

Liq. Cryst.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, and H. Takada, H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321-1327 (2002).
[CrossRef]

Meas. Sci. Technol.

I. Nishiyama, N. Yoshida, Y. Otani, and N. Umeda, “Single-shot birefringence measurement using radial polarizer fabricated by direct atomic force microscope stroking method,” Meas. Sci. Technol. 18, 1673-1677 (2007).
[CrossRef]

Nature

M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212-215 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Serak and N. Tabiryan, “Microwatt power optically controlled spatial solitons in azobenzene liquid crystals,” Proc. SPIE 6332, 63320Y (2006).
[CrossRef]

F. Moia, H. Seiberle, and M. Schadt, “Optical LPP/LCP devices: a new generation of optical security elements,” Proc. SPIE 3973, 196-203 (2000).
[CrossRef]

K. L. Marshall, J. Gan, G. Mitchell, S. Papernov, A. L. Rigatti, A. W. Schmid, and S. D. Jacobs, “Laser-damage-resistant photoalignment layers for high-peak-power liquid crystal device applications,” Proc. SPIE 7050, 70500L (2008).
[CrossRef]

Other

V. G. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “New developments in liquid crystal photo-aligning by azo dyes,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1253-1256.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoaligning: Physics and Applications in Liquid Crystal Devices (Wiley VCH, 2008).

M. Schadt and K. Schmitt, “Flat liquid crystal projectors with integrated cholesteric color filters/polarizers and photo-aligned optical retarders,” in Society for Information Display Proceedings of International Display Research Conference(Society for Information Display, 1997), Vol. IDRC97, 219-222.

K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, and M. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC, 2004).

M. J. Escuti and W. M. Jones, “Polarization independent switching with high contrast from a liquid crystal polarization grating,” in Society for Information Display '06 Digest (Society for Information Display, 2006), Vol. 37, pp. 1443-1446.

X. Li, Ping T. Au, P. Xu, A. Muravsky, A. Muravsky, Z. Liu, V. Chigrinov, and H. S. Kwok, “Flexible photoaligned optically rewritable LC display,” in Society for Information Display '06 Digest (Society for Information Display, 2006), 37, pp. 783-785.

A. Muravsky, A. Murauski, X. Li, and V. Chigrinov, “High efficiency optical rewritable device,” in Proceedings of the 13th International Display Workshops (IDW'06) (Society for Information Display, 2006), pp. 609-612.

V. Chigrinov, H. S. Kwok, H. Takada, H. Takatsu, and H. Hasebe, “Azo-dye alignment for displays and photonics,” in Society for Information Display '07 Digest (Society for Information Display, 2007), pp. 1474-1477.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Chemical formula of the bisazodye SD1.

Fig. 2
Fig. 2

Transmission spectra of SD1 photoalignment layer resulting from ten deposition procedures on a glass substrate before (1) and after photoalignment obtained with a light polarized parallel to the photoalignment direction (2) and perpendicular to it (3).

Fig. 3
Fig. 3

Photos of LCP films with patterned orientation obtained between crossed polarizers with a mask containing openings of circular and rectangular patterns: (a) and (b) photoalignment with UV light ( 365 nm ), and (c) and (d) photoalignment with visible light ( > 450 nm ).

Fig. 4
Fig. 4

Microstructures of LCP cycloidal OAGs of 6 μm spacing fabricated using SD1 photoalignment material on a polycarbonate substrate. Photos are taken with an optical microscope between crossed polarizers at 20 × and 100 × magnification. (a) and (b) Single exposure, and (c) and (d) double exposure.

Fig. 5
Fig. 5

Diffraction efficiency of LCP OAGs fabricated using SD1 as a photoalignment material with single and double exposures. The insert photo shows a high-efficiency OAG of 2 in . ( 5 cm ) diameter.

Fig. 6
Fig. 6

(a) Schematic of the LC cell. (b) Schematic of the setup for characterization of reversibility of photoalignment of SD1: P and A, polarizer/analyzer pair; LC, LC cell.

Fig. 7
Fig. 7

Controlling the transmission state of an LC cell containing SD1 surface command layer: 1 transformation from a twist to homogeneous planar orientation with UV light polarized in a direction parallel to the initial alignment direction of the SD1; 2 transformation from a planar to twist orientation with UV light polarized in a direction perpendicular to the original alignment direction of the SD1.

Fig. 8
Fig. 8

(a) Obtaining different twist angles from planar oriented state. (b) Restoring planar orientation from states with different initial twist angles. Data correspond to a 10 μm thick LC cell.

Fig. 9
Fig. 9

Reorientation dynamics of LC cells of different thickness due to photoalignment of SD1 layer by UV illumination of 15 mW / cm 2 intensity and 5 min exposure: (a) transformation from initial planar to 90 ° twist orientation and (b) transformation from initial twist to planar orientation.

Fig. 10
Fig. 10

(a) Normalized transmission for a 20 μm thick LC cell in the probe beam setup for UV-induced reorientation in consecutive steps: (a) transformation from planar to 90 ° twist orientation and (b) from twist to planar.

Fig. 11
Fig. 11

Transmission hysteresis as a function of the angle between the direction of linear polarization of the UV light and the planar orientation when changing the twist angle in consecutive steps.

Fig. 12
Fig. 12

Dynamics of changing of the easy axis orientation calculated from the transmission curve corresponding to 90 ° rotation of the optical axis of 10 mm thick LC.

Metrics