Abstract

Although the fluorescence behavior of acetone has already been examined widely, the amount of data is still not sufficient for the quantification of signals over the parameter field relevant for combustion engines. This leads to large uncertainties when new excitation wavelengths are applied or in cases where temperature and pressure and bath gas composition dependences of the fluorescence yield must be extrapolated from models. This work presents calibration results of the fluorescence signal intensities in nitrogen, air, and an exhaust-gas–air mixture in the wide range from 298 to 748K and from 0.2bar (0.02MPa) to 20bars for the two important excitation wavelengths 308 and 248nm. Based on this data, measurements of temperature and exhaust gas concentrations in a fired spark ignition engine were performed with high accuracy in single-shot images also.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
    [CrossRef] [PubMed]
  2. D.N.Assanis, P.M.Najt, J.E.Dec, J.A.Eng, T.N.Asmus, and F.Zhao, eds., Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues, SP-2005 (SAE Society of Automotive Engineers, 2006).
  3. N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).
  4. P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
    [CrossRef]
  5. M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99-124 (2007).
    [CrossRef]
  6. Combustion Engines and Hybrid Vehicles--IMechE Conference, Imeche Event Publications (Wiley, 1998), p. 322.
  7. J. Reboux and D. Puechberty, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper Series 941988 (SAE Society of Automotive Engineers, 1994).
  8. N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Paper Series 2005-02-2090 (SAE Society of Automotive Engineers, 2005).
  9. M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using toluene LIF,” J. Phys. Conf. Ser. 45, 133-139 (2006).
    [CrossRef]
  10. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
    [CrossRef]
  11. A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
    [CrossRef]
  12. S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).
  13. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251-253 (1997).
    [CrossRef] [PubMed]
  14. W. Koban, “Photophysical characterization of toluene and 3-pentanone for quantitative imaging of fuel/air ratio and temperature in combustion systems,” Doctoral thesis (Ruperto-Carola University, 2005).
  15. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
    [CrossRef]
  16. M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Ph.D. thesis (Stanford University, 1999).
  17. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
    [CrossRef] [PubMed]
  18. V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
    [CrossRef]
  19. F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
    [CrossRef]
  20. J. D. Koch, “Fuel tracer photophysics for quantitative planar laser-induced fluorescence,” Ph.D. thesis (Stanford University, 2005).
  21. T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).
  22. D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).
  23. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
    [CrossRef]
  24. D. A. Rothamer, “Development and application of infrared and tracer-based planar laser-induced fluorescence imaging diagnostics,” Ph.D. dissertation (Stanford University, 2007).
  25. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  26. M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).
  27. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
    [CrossRef] [PubMed]
  28. P. Sulzer and K. Wieland, “Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl,” Helv. Phys. Acta 25, 653-676 (1952).
  29. M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

2007 (2)

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99-124 (2007).
[CrossRef]

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

2006 (4)

2005 (2)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

2003 (1)

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

1998 (2)

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

1997 (2)

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251-253 (1997).
[CrossRef] [PubMed]

1996 (1)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

1952 (1)

P. Sulzer and K. Wieland, “Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl,” Helv. Phys. Acta 25, 653-676 (1952).

Akihama, K.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).

Aldén, M.

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Bassett, M.

N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).

Beyrau, F.

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Blaxill, H.

N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).

Braeuer, A.

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

Drake, M. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99-124 (2007).
[CrossRef]

Dreizler, A.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

Dubar, B.

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

Einecke, S.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

Fraser, N.

N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).

Fröba, A. P.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

Fujikawa, T.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).

Fukui, K.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).

Grasreiner, S.

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Grisch, F.

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Guibert, P.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251-253 (1997).
[CrossRef] [PubMed]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).

Hattori, Y.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).

Haworth, D. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99-124 (2007).
[CrossRef]

Heinisch, A.

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Kirby, B. J.

Koban, W.

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using toluene LIF,” J. Phys. Conf. Ser. 45, 133-139 (2006).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, “Photophysical characterization of toluene and 3-pentanone for quantitative imaging of fuel/air ratio and temperature in combustion systems,” Doctoral thesis (Ruperto-Carola University, 2005).

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

J. D. Koch, “Fuel tracer photophysics for quantitative planar laser-induced fluorescence,” Ph.D. thesis (Stanford University, 2005).

Koch, P.

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Kröckel, K.

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Leduc, P.

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

Leipertz, A.

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef] [PubMed]

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

Löffler, M.

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef] [PubMed]

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

Lumsden, G.

N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).

Luong, M.

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using toluene LIF,” J. Phys. Conf. Ser. 45, 133-139 (2006).
[CrossRef]

Maas, U.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

Melcher, B.

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

Modica, V.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Monnier, G.

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

Morin, C.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Münch, K.-U.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

Ossler, F.

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Pfadler, S.

Puechberty, D.

J. Reboux and D. Puechberty, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper Series 941988 (SAE Society of Automotive Engineers, 1994).

Rabenstein, F.

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

Ranini, A.

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

Reboux, J.

J. Reboux and D. Puechberty, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper Series 941988 (SAE Society of Automotive Engineers, 1994).

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Rothamer, D. A.

D. A. Rothamer, “Development and application of infrared and tracer-based planar laser-induced fluorescence imaging diagnostics,” Ph.D. dissertation (Stanford University, 2007).

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).

Schießl, R.

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

Schulz, C.

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using toluene LIF,” J. Phys. Conf. Ser. 45, 133-139 (2006).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Paper Series 2005-02-2090 (SAE Society of Automotive Engineers, 2005).

Snyder, J. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).

Steeper, R. R.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).

Sulzer, P.

P. Sulzer and K. Wieland, “Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl,” Helv. Phys. Acta 25, 653-676 (1952).

Thurber, M. C.

Votsmeier, M.

Weikl, M. C.

Wermuth, N.

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Paper Series 2005-02-2090 (SAE Society of Automotive Engineers, 2005).

Wieland, K.

P. Sulzer and K. Wieland, “Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl,” Helv. Phys. Acta 25, 653-676 (1952).

Wolfrum, J.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (4)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Combust. Flame (1)

A. P. Fröba, F. Rabenstein, K.-U. Münch, and A. Leipertz, “Mixture of triehtylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209(1998).
[CrossRef]

Helv. Phys. Acta (1)

P. Sulzer and K. Wieland, “Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl,” Helv. Phys. Acta 25, 653-676 (1952).

J. Phys. Conf. Ser. (1)

M. Luong, W. Koban, and C. Schulz, “Novel strategies for imaging temperature distribution using toluene LIF,” J. Phys. Conf. Ser. 45, 133-139 (2006).
[CrossRef]

Oil Gas Sci. Technol. (1)

P. Leduc, B. Dubar, A. Ranini, and G. Monnier, “Downsizing of gasoline engine: an efficient way to reduce CO2 emissions,” Oil Gas Sci. Technol. 58, 115-127 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Inst. (1)

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31, 99-124 (2007).
[CrossRef]

Prog. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Other (14)

M. Löffler, K. Kröckel, P. Koch, F. Beyrau, A. Leipertz, S. Grasreiner, and A. Heinisch, “Simultaneous quantitative measurements of temperature and residual gas fields inside a fired SI-engine using acetone laser-induced fluorescence,” SAE Technical Paper Series 2009-01-0656 (SAE Society of Automotive Engineers, 2009).

M. Löffler, A. Braeuer, B. Melcher, F. Beyrau, and A. Leipertz, “Behavior of the acetone laser-induced fluorescence under engine relevant conditions for the simultaneous visualization of temperature and concentration fields,” SAE Technical Paper Series 2007-01-0642 (SAE Society of Automotive Engineers, 2007).

Combustion Engines and Hybrid Vehicles--IMechE Conference, Imeche Event Publications (Wiley, 1998), p. 322.

J. Reboux and D. Puechberty, “A new approach of planar laser induced fluorescence applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper Series 941988 (SAE Society of Automotive Engineers, 1994).

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Paper Series 2005-02-2090 (SAE Society of Automotive Engineers, 2005).

S. Einecke, C. Schulz, V. Sick, A. Dreizler, R. Schießl, and U. Maas, “Two-dimensional temperature measurements in an SI engine using two-line tracer LIF,” SAE Technical Paper Series 98246 (SAE Society of Automotive Engineers, 1998).

W. Koban, “Photophysical characterization of toluene and 3-pentanone for quantitative imaging of fuel/air ratio and temperature in combustion systems,” Doctoral thesis (Ruperto-Carola University, 2005).

J. D. Koch, “Fuel tracer photophysics for quantitative planar laser-induced fluorescence,” Ph.D. thesis (Stanford University, 2005).

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Paper Series 2006-01-3336 (SAE Society of Automotive Engineers, 2006).

D. A. Rothamer, J. A. Snyder, R. K. Hanson, and R. R. Steeper, “Two-wavelength PLIF diagnostic for temperature and composition,” SAE Technical Paper Series 2008-01-1067 (SAE Society of Automotive Engineers, 2008).

D. A. Rothamer, “Development and application of infrared and tracer-based planar laser-induced fluorescence imaging diagnostics,” Ph.D. dissertation (Stanford University, 2007).

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Ph.D. thesis (Stanford University, 1999).

D.N.Assanis, P.M.Najt, J.E.Dec, J.A.Eng, T.N.Asmus, and F.Zhao, eds., Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues, SP-2005 (SAE Society of Automotive Engineers, 2006).

N. Fraser, H. Blaxill, G. Lumsden, and M. Bassett, “Challenges for increased efficiency through gasoline engine downsizing,” SAE Technical Paper Series 2009-01-1053 (SAE Society of Automotive Engineers, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Setup with calibration chamber. Further components: A, aperture; M, mirror; DC, dichroic mirror; L1, focusing cylindric lens, f = 500 mm ; L2, cylindric Fourier lens, f = 1000 mm ; L3, Kepler telescope for adaptation of the beam cross section to the homogenizer.

Fig. 2
Fig. 2

Measured absorption cross section of acetone.

Fig. 3
Fig. 3

Signal intensity of acetone in nitrogen with 308 nm excitation normalized to acetone in air with 295 K and 1 bar , constant tracer number density.

Fig. 4
Fig. 4

Signal intensity of acetone in nitrogen with 248 nm excitation normalized to acetone in air with 295 K and 1 bar ; constant tracer number density.

Fig. 5
Fig. 5

Signal intensity ratio 308 nm / 248 nm of acetone in nitrogen normalized to acetone in air with 295 K and 1 bar .

Fig. 6
Fig. 6

Signal intensity of acetone in air with 308 nm excitation normalized to acetone in air with 295 K and 1 bar ; constant tracer number density.

Fig. 7
Fig. 7

Signal intensity of acetone in air with 248 nm excitation normalized to acetone in air with 295 K and 1 bar ; constant tracer number density.

Fig. 8
Fig. 8

Signal intensity ratio 308 nm / 248 nm of acetone in air normalized to acetone in air with 295 K and 1 bar .

Fig. 9
Fig. 9

Signal intensity of acetone in a 1 1 air/ exhaust-gas mixture with 308 nm excitation normalized to acetone in air with 295 K and 1 bar ; constant tracer number density.

Fig. 10
Fig. 10

Signal intensity of acetone in a 1 1 air/ exhaust-gas mixture with 248 nm excitation normalized to acetone in air with 295 K and 1 bar ; constant tracer number density.

Fig. 11
Fig. 11

Signal intensity ratio 308 nm / 248 nm of acetone in a 1 1 air/exhaust-gas mixture normalized to acetone in air with 295 K and 1 bar .

Fig. 12
Fig. 12

PDFs of (a) temperature and (b) concentration of a control measurement in the calibration chamber.

Fig. 13
Fig. 13

Engine setup.

Fig. 14
Fig. 14

Single-shots of temperature and fraction of intake air during the intake stroke of a gasoline direct injection engine.

Fig. 15
Fig. 15

Temperature and concentration of residual gas in a spark ignition direct injection engine during the compression stroke. The crank angle ( ° CA ) is given in degrees after top dead center (ATDC) of the high pressure cycle.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

S fl = η opt E pulse A h ν V pix ρ tracer σ abs ( λ , T ) ϕ fl ( λ , T , p , χ i ) .
S 308 S 248 = η 308 E 308 σ 308 ( T ) ϕ 308 ( T , p , χ i ) η 248 E 248 σ 248 ( T ) ϕ 248 ( T , p , χ i ) .
S 308. norm S 248. norm = E 308 σ 308 ( T ) ϕ 308 ( T , p , χ i ) E 308 , ref σ 308 ( 295 K ) ϕ 308 ( 295 K , 1 bar , air ) E 248 σ 248 ( T ) ϕ 248 ( T , p , χ i ) E 248 , ref σ 248 ( 295 K ) ϕ 248 ( 295 K , 1 bar , air ) .
T = f ( S 308 , norm S 248 , norm , p , χ i ) .
S 308 , norm = f ( ρ tracer , T , p , χ i ) .
ϕ = k F k F + k coll + k nr + k quench ,
E = E th + E laser E 0 .
Δ E coll = α ( E E th ) .
ϕ = k F k F + k coll + k nr , 1 + k quench , 1 + i = 2 N 1 [ k F k F + k coll + k nr , i + k quench , i j = 1 i 1 ( k coll k F + k coll + k nr , j + k quench , j ) ] + k F k F + k nr , N + k quench , N j = 1 N 1 ( k coll k F + k nr , j + k quench , j ) .
σ abs ( λ , T ) = A ( T ) exp [ ( λ λ c ( T ) w ( T ) ) 2 ] ,
A = 5.62 × 10 23 T + 3.13 × 10 20 , λ C = 0.01579 T + 271.7 , w = 0.007981 T + 27.72
S 308 ( p , T ) = a 0 + a 1 ln p + a 2 ( ln p ) 2 + a 3 ( ln p ) 3 + a 4 ( ln p ) 4 + a 5 ( ln p ) 5 + a 6 T + a 7 T 2 + a 8 T 3 + a 9 T 4 + a 10 T 5 ,
a 0 = 24.286 , a 1 = 0.1409 , a 2 = 0.05854 , a 3 = 0.001028 ,
a 4 = 0.01669 , a 5 = 0.004182 , a 6 = 53869 , a 7 = 4.966 × 10 7 ,
a 8 = 2.2355 × 10 10 , a 9 = 4.8955 × 10 12 , a 10 = 4.1754 × 10 14 ,
S 248 ( p , T ) = ( a 0 + a 1 ln p + a 2 ( ln p ) 2 + a 3 T + a 4 T 2 + a 5 T 3 ) ( 1 + a 6 ln p + a 7 ( ln p ) 2 + a 8 T + a 9 T 2 ) ,
a 0 = 2.134 , a 1 = 0.08782 , a 2 = 0.02660 , a 3 = 0.007045 , a 4 = 9.039 × 10 6 ,
a 5 = 4.195 × 10 9 , a 6 = 0.29410 , a 7 = 0.04961 , a 8 = 0.001282 , a 9 = 1.164 × 10 6 ,
S R ( p , T ) = exp [ a 0 + a 1 p + a 2 p ln p + a 3 exp ( p / a 9 ) + a 4 p 0.5 ln p + a 5 ln p + a 6 T + a 7 T ln T + a 8 T 1.5 ] ,
a 0 = 20.93 , a 1 = 4.879 , a 2 = 0.8545 , a 3 = 14.48 , a 4 = 3.479 ,
a 5 = 0.7691 , a 6 = 0.07516 , a 7 = 0.01516 , a 8 = 8.863 × 10 4 , a 9 = 42.75.
S 308 ( p , T ) = a 0 + a 1 ln p + a 2 ln T + a 3 ( ln p ) 2 + a 4 ( ln T ) 2 + a 5 ln p ln T
+ a 6 ( ln p ) 3 + a 7 ( ln T ) 3 + a 8 ln p ( ln T ) 2 + a 9 ( ln p ) 2 ln T ,
a 0 = 185.4 , a 1 = 9.360 , a 2 = 91.27 , a 3 = 0.05353 , a 4 = 14.95 ,
a 5 = 3.195 , a 6 = 0.01361 , a 7 = 0.8092 , a 8 = 0.2689 , a 9 = 0.007626 ,
S 248 ( p , T ) = exp [ a 0 + a 1 p + a 2 p 0.5 ln p + a 3 p 0.5 + a 4 T 1.5 + a 5 T 2 + a 6 T 2 ln T + a 7 T 2.5 + a 8 T 3 ] ,
a 0 = 10.47 , a 1 = 0.06125 , a 2 = 0.04201 , a 3 = 0.6753 , a 4 = 0.09081 ,
a 5 = 0.027202 , a 6 = 0.00485715 , a 7 = 3.6668 × 10 4 , a 8 = 2.384 × 10 6 ,
S R ( p , T ) = exp [ a 0 + a 1 p + a 2 exp ( p / a 9 ) + a 3 p 0.5 + a 4 T + a 5 T ln T + a 6 T 1.5 + a 7 T 0.5 ln T + a 8 T ln T ] ,
a 0 = 3062.84 , a 1 = 0.04109 , a 2 = 2.043 , a 3 = 0.1506 , a 4 = 199.67977 ,
a 5 = 4.3061809 , a 6 = 0.093749 , a 7 = 343.0302228 , a 8 = 1692.1561 , a 9 = 24.47.
S 308 ( p , T ) = a 0 + a 1 ln p + a 2 T + a 3 ( ln p ) 2 + a 4 T 2 + a 5 T ln p + a 6 ( ln p ) 3
+ a 7 T 3 + a 8 T 2 ln p + a 9 T ( ln p ) 2 ,
a 0 = 0.2433 , a 1 = 0.09817 , a 2 = 0.003374 , a 3 = 0.007059 ,
a 4 = 1.488 × 10 6 , a 5 = 9.020 × 10 5 , a 6 = 0.01130 , a 7 = 8.807 × 10 10 ,
a 8 = 1.722 × 10 7 , a 9 = 2.108 × 10 5 ,
S 248 ( p , T ) = exp [ a 0 + a 1 p + a 2 exp ( p / a 9 ) + a 3 p 0.5 + a 4 ln p + a 5 T + a 6 T ln T + a 7 T 1.5 + a 8 T 2 ] ,
a 0 = 19.31 , a 1 = 0.008391 , a 2 = 7.546 , a 3 = 1.150 , a 4 = 0.1577 , a 5 = 1.33276986 ,
a 6 = 0.31161866 , a 7 = 0.03594287 , a 8 = 2.866 × 10 4 , a 9 = 44.59 ,
S R ( p , T ) = exp [ a 0 + a 1 p + a 2 p ln p + a 3 p 0.5 ln p + a 4 p 0.5 + a 5 T + a 6 T 1.5 + a 7 T 0.5 ln T + a 8 T ln T ] ,
a 0 = 811.116 , a 1 = 0.4787 , a 2 = 0.08685 , a 3 = 0.1925 , a 4 = 0.1280 ,
a 5 = 46.388106 , a 6 = 0.05484626 , a 7 = 106.8297 , a 8 = 475.2455.

Metrics