Abstract

Mesoporous silicon (PSi) microcavities (MC) based on one-dimensional photonic crystals have been studied as optical sensors for relative humidity (RH). Oxidized PSi modified the structure of the MC such that the spectral position of the MC resonance peak depended on the humidity. A spectral shift of the MC resonance peak of up to 6nm to longer wavelengths was observed as the RH increased from 20% to 85%. Ultrasound affects the MC peak spectral position in the reverse direction as a result of water removal from mesoporous structure. This effect can be used for the stabilization of the peak spectral position for an optical interconnect and fast recovery of the optical gas sensors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
    [CrossRef]
  2. M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
    [CrossRef]
  3. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
    [CrossRef] [PubMed]
  4. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000).
    [CrossRef]
  5. S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
    [CrossRef] [PubMed]
  6. V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
    [CrossRef] [PubMed]
  7. C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
    [CrossRef] [PubMed]
  8. L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
    [CrossRef]
  9. L. De Stefano, R. Moretti, I. Rendina, S. Tundo, and A. M. Rossi, “Smart optical sensors for chemical substances based on porous silicon technology,” Appl. Opt. 43, 167-172(2004).
    [CrossRef] [PubMed]
  10. A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
    [CrossRef]
  11. C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
    [CrossRef]
  12. P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
    [CrossRef]
  13. Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
    [CrossRef]
  14. J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
    [CrossRef]
  15. S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
    [CrossRef]
  16. S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982), p. 112.
  17. C. F. Bohren and D. R. Huffman, The Absorption and Scattering of Light By Small Particles (Wiley, 1983), p. 217.
  18. J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
    [PubMed]
  19. Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
    [CrossRef]
  20. V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
    [CrossRef] [PubMed]
  21. E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991).
    [CrossRef] [PubMed]

2007 (2)

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

2005 (2)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (4)

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
[CrossRef]

Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
[CrossRef]

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

2002 (1)

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

2001 (1)

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

2000 (2)

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000).
[CrossRef]

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

1999 (1)

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

1997 (1)

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

1995 (1)

J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
[CrossRef]

1994 (1)

M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
[CrossRef]

1991 (1)

E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991).
[CrossRef] [PubMed]

Ádam, M.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Andreani, C.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Baratto, C.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Ben-Chorin, M.

M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
[CrossRef]

Benecke, W.

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

Bödecker, A.

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, The Absorption and Scattering of Light By Small Particles (Wiley, 1983), p. 217.

Canham, L. T.

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

Chadiri, M. R.

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Chan, S.

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

Cunin, F.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

Dancil, K. P. C.

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Dücso, Cs.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Euler, W. B.

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

Faglia, G.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Fauchet, P. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
[CrossRef]

Fauchett, P. M.

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

Flint, E. B.

E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991).
[CrossRef] [PubMed]

Furjes, P.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Gaburro, Z.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Garbuio, V.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Gregg, S. J.

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982), p. 112.

Horner, S. R.

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, The Absorption and Scattering of Light By Small Particles (Wiley, 1983), p. 217.

Hulicius, E.

J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
[CrossRef]

Imberti, S.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Kovacs, A.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Kristofic, J.

J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
[CrossRef]

Kurmaev, E. Z.

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Kux, A.

M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
[CrossRef]

Levitsky, A.

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

Levitsky, A. I.

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Lin, V. S. Y.

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Liu, Y.-C.

Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
[CrossRef]

Lu, L.-H.

Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
[CrossRef]

Mares, J. J.

J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
[CrossRef]

McLeod, J.

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Mescheder, U.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Miller, B. L.

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

Miskelly, G. M.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

Moewes, A.

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Molinari, M.

S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
[CrossRef]

Moretti, L.

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

Moretti, R.

Motesharei, K.

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Muller, B.

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Mulloni, V.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000).
[CrossRef]

Oton, C.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Pacholski, C.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

Pancheri, L.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Pavesi, L.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000).
[CrossRef]

Pietropaolo, A.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Reiter, G. F.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Rendina, I.

L. De Stefano, R. Moretti, I. Rendina, S. Tundo, and A. M. Rossi, “Smart optical sensors for chemical substances based on porous silicon technology,” Appl. Opt. 43, 167-172(2004).
[CrossRef] [PubMed]

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

Ricci, M. A.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Rittersma, Z. M.

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

Rose, A.

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

Rossi, A. M.

L. De Stefano, R. Moretti, I. Rendina, S. Tundo, and A. M. Rossi, “Smart optical sensors for chemical substances based on porous silicon technology,” Appl. Opt. 43, 167-172(2004).
[CrossRef] [PubMed]

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

Russel, P. J.

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

Saarinen, J. J.

Sailor, M. J.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Sartor, M.

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

Sberveglieri, G.

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Schechter, I.

M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
[CrossRef]

Senesi, R.

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Sing, K. S.

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982), p. 112.

Sipe, J. E.

Snow, P. A.

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

Splinter, A.

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

Squire, E. K.

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

Stefano, L. De

L. De Stefano, R. Moretti, I. Rendina, S. Tundo, and A. M. Rossi, “Smart optical sensors for chemical substances based on porous silicon technology,” Appl. Opt. 43, 167-172(2004).
[CrossRef] [PubMed]

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

Sushko, P. V.

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Suslick, K. S.

E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991).
[CrossRef] [PubMed]

Tokranova, N.

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

Tundo, S.

Wang, Q.

Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
[CrossRef]

Weiss, S. M.

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Levitsky, W. B. Euler, N. Tokranova, and A. Rose, “Fluorescent polymer-porous silicon microcavity devices for explosive detection,” Appl. Phys. Lett. 90, 041904 (2007).
[CrossRef]

M. Ben-Chorin, A. Kux, and I. Schechter, “Adsorbate effects on photoluminescence and electrical conductivity of porous silicon,” Appl. Phys. Lett. 64, 481-483 (1994).
[CrossRef]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523 (2000).
[CrossRef]

S. M. Weiss, M. Molinari, and P. M. Fauchet, “Temperature stability for silicon-based photonic band-gap structures,” Appl. Phys. Lett. 83, 1980-1983 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

Y.-C. Liu, Q. Wang, and L.-H. Lu, “Water confined in nanopores: its molecular distribution and diffusion at lower density,” Chem. Phys. Lett. 381, 210-215 (2003).
[CrossRef]

J. Am. Chem. Soc. (2)

S. Chan, S. R. Horner, P. M. Fauchett, and B. L. Miller, “Identification of gram negative bacteria using nanoscale silicon microcavities,” J. Am. Chem. Soc. 123, 11797-11798(2001).
[CrossRef] [PubMed]

C. Pacholski, M. Sartor, M. J. Sailor, F. Cunin, and G. M. Miskelly, “Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy,” J. Am. Chem. Soc. 127, 11636-11645 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

P. A. Snow, E. K. Squire, P. J. Russel, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781-1784 (1999).
[CrossRef]

J. Chem. Phys. (1)

V. Garbuio, C. Andreani, S. Imberti, A. Pietropaolo, G. F. Reiter, R. Senesi, and M. A. Ricci, “Proton quantum coherence observed in water confined in silica nanopores,” J. Chem. Phys. 127, 154501 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

J. McLeod, E. Z. Kurmaev, P. V. Sushko, A. Moewes, and A. I. Levitsky, “X-ray spectroscopy detection of nitroexplosive vapors adsorbed in mesoporous silicon,” Phys. Rev. Lett. (to be published).
[PubMed]

Science (2)

E. B. Flint and K. S. Suslick, “The temperature of cavitation,” Science 253, 1397-1399 (1991).
[CrossRef] [PubMed]

V. S. Y. Lin, K. Motesharei, K. P. C. Dancil, M. J. Sailor, and M. R. Chadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840-843 (1997).
[CrossRef] [PubMed]

Sens. Actuators A, Phys. (1)

L. De Stefano, L. Moretti, I. Rendina, and A. M. Rossi, “Porous silicon microcavities for optical hydrocarbons detection,” Sens. Actuators A, Phys. 104, 179-182 (2003).
[CrossRef]

Sens. Actuators B (2)

P. Furjes, A. Kovacs, Cs. Dücso, M. Ádam, B. Muller, and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters,” Sens. Actuators B 95, 140-144 (2003).
[CrossRef]

Z. M. Rittersma, A. Splinter, A. Bödecker, and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor,” Sens. Actuators B 68, 210-217 (2000).
[CrossRef]

Sensors (1)

C. Baratto, G. Faglia, G. Sberveglieri, Z. Gaburro, L. Pancheri, C. Oton, and L. Pavesi, “Multiparametric porous silicon sensors,” Sensors 2, 121-126 (2002).
[CrossRef]

Thin Solid Films (1)

J. J. Mares, J. Kristofic, and E. Hulicius, “Influence of humidity on transport in porous silicon,” Thin Solid Films 255, 272-275 (1995).
[CrossRef]

Other (2)

S. J. Gregg and K. S. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic, 1982), p. 112.

C. F. Bohren and D. R. Huffman, The Absorption and Scattering of Light By Small Particles (Wiley, 1983), p. 217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Reflectance spectra of the fresh prepared PSi MC (dashed line) and after annealing (solid line). (b) SEM image of the cross section of porous Si etched at 30 mA / cm 2 .

Fig. 2
Fig. 2

(a) Dependence of the spectral shift of MC peak on RH% at 22 ° C and MC spectral position for RH = 20 % (black) and RH = 85 % (red). (b) Dependence of the spectral shift of MC peak on ultrasound power P at RH = 85 % and MC spectral position for P = 0 mW (black) and P 125 mW (blue). Inset shows the MC peak spectral shift on temperature. (c) Dependence of the spectral shift of MC peak on air pressure, at RH = 85 % and MC spectral position for pressure of 10 5 Pa (black) and 5 × 10 3 Pa (blue).

Fig. 3
Fig. 3

Time traces of the normalized reflectance for ON/OFF cycle of applied ultrasound power (a) and vacuum (b). Reflectance intensities were taken on the half-width of the MC peak for short wavelength (blue) and long wavelength (red) shoulders. Ultrasound power is 125 mW and final air pressure is 5 × 10 3 Pa ( RH = 20 % ).

Fig. 4
Fig. 4

Time traces of the normalized reflectance upon exposure of saturated vapors of nitrotoluene (NT) followed by 125 mW ultrasound ON/OFF cycle. Reflectance intensities (blue and red) are the same as in Fig. 3 ( RH = 20 % ).

Tables (1)

Tables Icon

Table 1 Characteristics of PSi Monolayers of Different Porosity and the Spectral Shift of Their Fabry-Perot Fringes (at 600 nm ) Upon Ultrasound Power ( Δ λ US ) and Pressure ( Δ λ V A C )

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P P S = exp ( γ V L R T r ) ,
i n ρ i [ ( ε i ε a v ) ( ε i + 2 ε a v ) ] = 0 ,
ρ [ ( ε s i ε a v ) ( ε s i + 2 ε a v ) ] + ( 1 ρ ρ w ) [ ( ε air ε a v ) ( ε air + 2 ε a v ) ] + ρ w [ ( ε w ε a v ) ( ε w + 2 ε a v ) ] = 0 ,

Metrics