Abstract

We propose an optical design for miniature 2.5× zoom fold optics with liquid elements. First, we reduce the volumetric size of the system. Second, this newly developed design significantly reduces the number of moving groups for this 2.5× miniature zoom optics (with only two moving groups compared with the four or five groups of the traditional zoom lens system), thanks to the assistance of liquid lens elements in particular. With regard to the extended optimization of this zoom optics, relative illuminance (RI) and the modulation transfer function (MTF) are considered because the more rays passing through the edge of the image, the lower will be the MTF, at high spatial frequencies in particular. Extended optimization employs the integration of the Taguchi method and the robust multiple criterion optimization (RMCO) approach. In this approach, a Pareto optimal robust design solution is set with the aid of a certain design of the experimental set, which uses analysis of variance results to quantify the relative dominance and significance of the design factors. It is concluded that the Taguchi method and RMCO approach is successful in optimizing the RI and MTF values of the fold 2.5× zoom lens system and yields better and more balanced performance, which is very difficult for the traditional least damping square method to achieve.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Xiao and Z. Cen, “Optimization design of lens system,” Proc. SPIE 4927, 44-49 (2002).
    [CrossRef]
  2. C. P. Sung and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35, 1668-1676 (1996).
    [CrossRef]
  3. S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
    [CrossRef]
  4. C. M. Tsai and Y. C. Fang, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A 10, 075304 (2008).
    [CrossRef]
  5. S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 16 (2004).
  6. F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
    [CrossRef]
  7. F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
    [CrossRef]
  8. Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
    [CrossRef]
  9. Y. C. Fang, C. M. Tsai, J. MacDonald, and Y. C. Pai, “Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm,” Appl. Opt. 46, 2401-2410 (2007).
    [CrossRef] [PubMed]
  10. Y. C. Fang and B. W. Wu, “Eliminating lateral color aberration of high-resolution digital projection lens using a novel genetic algorithms,” Opt. Eng. 46, P073003 (2007).
    [CrossRef]
  11. A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
    [CrossRef]
  12. L. J. Yang, “Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimization of the processing parameters.,” J. Mater. Process. Technol. 113, 521-526(2001).
    [CrossRef]
  13. E. A. Elsayed and A. Chen, “Optimal levels of process parameters for products with multiple characteristics,” Int. J. Prod. Res. 31, 1117-1132 (1993).
    [CrossRef]
  14. L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
    [CrossRef]
  15. Model Arctic 320 liquid lens technical datasheet: optical and opto-mechanical data (Varioptic, SA, 2006).
  16. C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.
  17. C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
    [CrossRef]
  18. J. Santamaria, P. Artal, and J. Bescos, “Determination of the pointspread function of the human eye using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109-1114(1987).
    [CrossRef] [PubMed]
  19. C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, 1989).
  20. A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
    [CrossRef] [PubMed]
  21. A. Kunjur and S. Krishnamurty, “A robust multi-criteria optimization approach,” Mech. Mach. Theory 32, 797-810(1997).
    [CrossRef]
  22. A. Kunjur and S. Krishnamurty, “Multi-criteria based robust design approach,” http://www.ecs.umass.edu/mie/labs/mda/mechanism/papers/robust.html.
  23. W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

2008

C. M. Tsai and Y. C. Fang, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A 10, 075304 (2008).
[CrossRef]

2007

Y. C. Fang and B. W. Wu, “Eliminating lateral color aberration of high-resolution digital projection lens using a novel genetic algorithms,” Opt. Eng. 46, P073003 (2007).
[CrossRef]

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

Y. C. Fang, C. M. Tsai, J. MacDonald, and Y. C. Pai, “Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm,” Appl. Opt. 46, 2401-2410 (2007).
[CrossRef] [PubMed]

2006

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

2004

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 16 (2004).

2003

W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

2002

T. Xiao and Z. Cen, “Optimization design of lens system,” Proc. SPIE 4927, 44-49 (2002).
[CrossRef]

A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
[CrossRef]

2001

L. J. Yang, “Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimization of the processing parameters.,” J. Mater. Process. Technol. 113, 521-526(2001).
[CrossRef]

1997

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

A. Kunjur and S. Krishnamurty, “A robust multi-criteria optimization approach,” Mech. Mach. Theory 32, 797-810(1997).
[CrossRef]

L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
[CrossRef]

1996

C. P. Sung and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35, 1668-1676 (1996).
[CrossRef]

1993

E. A. Elsayed and A. Chen, “Optimal levels of process parameters for products with multiple characteristics,” Int. J. Prod. Res. 31, 1117-1132 (1993).
[CrossRef]

1987

Alsaran, A.

A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
[CrossRef]

Artal, P.

Artigas, J. M.

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

Becklund, O. A.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, 1989).

Berge, B.

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Bescos, J.

Bruer, A.

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Çelik, A.

A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
[CrossRef]

Çelik, C.

A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
[CrossRef]

Cen, Z.

T. Xiao and Z. Cen, “Optimization design of lens system,” Proc. SPIE 4927, 44-49 (2002).
[CrossRef]

Chang, E. H.

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

Chen, A.

E. A. Elsayed and A. Chen, “Optimal levels of process parameters for products with multiple characteristics,” Int. J. Prod. Res. 31, 1117-1132 (1993).
[CrossRef]

Chou, J. H.

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

Craen, P.

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

Deladi, I.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

Elsayed, E. A.

E. A. Elsayed and A. Chen, “Optimal levels of process parameters for products with multiple characteristics,” Int. J. Prod. Res. 31, 1117-1132 (1993).
[CrossRef]

Fang, Y. C.

C. M. Tsai and Y. C. Fang, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A 10, 075304 (2008).
[CrossRef]

Y. C. Fang and B. W. Wu, “Eliminating lateral color aberration of high-resolution digital projection lens using a novel genetic algorithms,” Opt. Eng. 46, P073003 (2007).
[CrossRef]

Y. C. Fang, C. M. Tsai, J. MacDonald, and Y. C. Pai, “Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm,” Appl. Opt. 46, 2401-2410 (2007).
[CrossRef] [PubMed]

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Helwegen, I.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 16 (2004).

Ho, W. H.

W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

Hu, C. C.

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Krishnamurty, S.

A. Kunjur and S. Krishnamurty, “A robust multi-criteria optimization approach,” Mech. Mach. Theory 32, 797-810(1997).
[CrossRef]

Kuiper, S.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

Kuipera, S.

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 16 (2004).

Kunjur, A.

A. Kunjur and S. Krishnamurty, “A robust multi-criteria optimization approach,” Mech. Mach. Theory 32, 797-810(1997).
[CrossRef]

Lin, B. T.

W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

Lin, H. C.

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Lin, Y. C.

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Liu, T. K.

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

Lorente, A.

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

MacDonald, J.

Y. C. Fang, C. M. Tsai, J. MacDonald, and Y. C. Pai, “Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm,” Appl. Opt. 46, 2401-2410 (2007).
[CrossRef] [PubMed]

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

Malo, J.

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

Pai, Y. C.

Pons, A. M.

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

Santamaria, J.

Schreiber, P.

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Shannon, R. R.

C. P. Sung and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35, 1668-1676 (1996).
[CrossRef]

Su, C. T.

L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
[CrossRef]

Su, H. W.

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Suijver, J. F.

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

Sung, C. P.

C. P. Sung and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35, 1668-1676 (1996).
[CrossRef]

Teng, L. W.

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

Tong, L. I.

L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
[CrossRef]

Tsai, C. M.

C. M. Tsai and Y. C. Fang, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A 10, 075304 (2008).
[CrossRef]

Y. C. Fang, C. M. Tsai, J. MacDonald, and Y. C. Pai, “Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm,” Appl. Opt. 46, 2401-2410 (2007).
[CrossRef] [PubMed]

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

Tsai, H. L.

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

Wang, C. H.

L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
[CrossRef]

Williams, C. S.

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, 1989).

Wippermann, F. C.

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Wu, B. W.

Y. C. Fang and B. W. Wu, “Eliminating lateral color aberration of high-resolution digital projection lens using a novel genetic algorithms,” Opt. Eng. 46, P073003 (2007).
[CrossRef]

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

Xiao, T.

T. Xiao and Z. Cen, “Optimization design of lens system,” Proc. SPIE 4927, 44-49 (2002).
[CrossRef]

Yang, L. J.

L. J. Yang, “Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimization of the processing parameters.,” J. Mater. Process. Technol. 113, 521-526(2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 16 (2004).

Int. J. Prod. Res.

E. A. Elsayed and A. Chen, “Optimal levels of process parameters for products with multiple characteristics,” Int. J. Prod. Res. 31, 1117-1132 (1993).
[CrossRef]

Int. J. Qual. Reliab. Manage.

L. I. Tong, C. T. Su, and C. H. Wang, “The optimization of multi-response problems in Taguchi method,” Int. J. Qual. Reliab. Manage. 14, 367-80 (1997).
[CrossRef]

J. Mater. Process. Technol.

L. J. Yang, “Plasma surface hardening of ASSAB 760 steel specimens with Taguchi optimization of the processing parameters.,” J. Mater. Process. Technol. 113, 521-526(2001).
[CrossRef]

J. Mod. Opt.

Y. C. Fang, T. K. Liu, J. MacDonald, J. H. Chou, B. W. Wu, H. L. Tsai, and E. H. Chang, “Optimizing chromatic aberration calibration using a novel genetic algorithm,” J. Mod. Opt. 53, 1411-1427 (2006).
[CrossRef]

J. Opt. A

C. M. Tsai and Y. C. Fang, “Miniature lens design and optimization with liquid lens element via genetic algorithm,” J. Opt. A 10, 075304 (2008).
[CrossRef]

J. Opt. Soc. Am. A

J. Taiwan Soc. Nav. Archit. Mar. Eng.

W. H. Ho, B. T. Lin, and J. H. Chou, “Robust multi-criteria optimal design for chain block h beam and container post,” J. Taiwan Soc. Nav. Archit. Mar. Eng. 22, 53-61 (2003).

Mech. Mach. Theory

A. Kunjur and S. Krishnamurty, “A robust multi-criteria optimization approach,” Mech. Mach. Theory 32, 797-810(1997).
[CrossRef]

Ophthalmic Physiol. Opt.

A. Lorente, A. M. Pons, J. Malo, and J. M. Artigas, “Standard criterion for fluctuations of modulation transfer function in human eye: application to disposable contact lenses,” Ophthalmic Physiol. Opt. 17, 267-272 (1997).
[CrossRef] [PubMed]

Opt. Eng.

C. P. Sung and R. R. Shannon, “Zoom lens design using lens modules,” Opt. Eng. 35, 1668-1676 (1996).
[CrossRef]

Y. C. Fang and B. W. Wu, “Eliminating lateral color aberration of high-resolution digital projection lens using a novel genetic algorithms,” Opt. Eng. 46, P073003 (2007).
[CrossRef]

Proc. SPIE

F. C. Wippermann, P. Schreiber, A. Bruer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007).
[CrossRef]

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, “Mechanically assisted liquid lens zoom system for mobile phone cameras,” Proc. SPIE 6289, 62890T (2006).
[CrossRef]

S. Kuiper, B. H. W. Hendriks, J. F. Suijver, I. Deladi, and I. Helwegen, “Zoom camera based on liquid lenses, MOEMS and miniaturized systems VI,” Proc. SPIE 6466, 64660F(2007).
[CrossRef]

T. Xiao and Z. Cen, “Optimization design of lens system,” Proc. SPIE 4927, 44-49 (2002).
[CrossRef]

C. C. Hu, Y. C. Fang, C. M. Tsai, H. C. Lin, H. W. Su, and Y. C. Lin, “Optical design method for high zoom ratio lens with liquid lens and digital signal processing,” Proc. SPIE , 666766670R (2007).
[CrossRef]

Surf. Coat. Technol.

A. Alsaran, A. Çelik, and C. Çelik, “Determination of the optimum conditions for ion nitriding of AISI 5140 steel,” Surf. Coat. Technol. 160, 219-226 (2002).
[CrossRef]

Other

C. S. Williams and O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, 1989).

Model Arctic 320 liquid lens technical datasheet: optical and opto-mechanical data (Varioptic, SA, 2006).

C. C. Hu, Y. C. Fang, H. W. Su, L. W. Teng, H. C. Lin, and Y. C. Lin, “Chromatic aberration elimination for 3× zoom lens design with liquid lens via genetic algorithm,” presented at The 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, 8-12 July 2007.

A. Kunjur and S. Krishnamurty, “Multi-criteria based robust design approach,” http://www.ecs.umass.edu/mie/labs/mda/mechanism/papers/robust.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

(a) Schematic cross section of an electrowetting lens. (b)  Lens shape adjusted by application of a voltage to achieve ray convergence [3].

Fig. 2
Fig. 2

Schematic drawing of liquid lens [15].

Fig. 3
Fig. 3

Constructional drawing of liquid lens [15].

Fig. 4
Fig. 4

Flow chart for the design of a fold optical zoom lens system.

Fig. 5
Fig. 5

2.5 × zoom lens layout (zoom 1).

Fig. 6
Fig. 6

2.5 × zoom lens layout (zoom 2).

Fig. 7
Fig. 7

2.5 × zoom lens layout (zoom 3).

Fig. 8
Fig. 8

Performance with MTF for (zoom 1).

Fig. 9
Fig. 9

Performance with MTF for (zoom 2).

Fig. 10
Fig. 10

Performance with MTF for (zoom 3).

Fig. 11
Fig. 11

Performance of field curves (zoom 1).

Fig. 12
Fig. 12

Performance of field curves (zoom 2).

Fig. 13
Fig. 13

Performance of field curves (zoom 3).

Fig. 14
Fig. 14

Performance of rays fan (zoom 1).

Fig. 15
Fig. 15

Performance of rays fan (zoom 2).

Fig. 16
Fig. 16

Performance of rays fan (zoom 3).

Fig. 17
Fig. 17

Engineering system using the Taguchi method.

Fig. 18
Fig. 18

Control factors of zoom optics.

Fig. 19
Fig. 19

Flow chart of the robust multiple criterion optimization procedure [21, 22].

Fig. 20
Fig. 20

Graph of MTF against RI in position 1.

Tables (12)

Tables Icon

Table 1 Index of Refraction versus Wavelength λ for Glass Material [15]

Tables Icon

Table 2 Index of Refraction versus Wavelength for Liquids [15]

Tables Icon

Table 3 Radius of Curvature and Liquid Thickness at Driving Voltages [15]

Tables Icon

Table 4 Fold Optical Zoom Lens Design Specification

Tables Icon

Table 5 Fold Optical Zoom Lens Design Goals and Performance

Tables Icon

Table 6 Control Factors and Their Levels ( L 9 )

Tables Icon

Table 7 Noise Factors (Tolerance) and Their Levels ( L 4 )

Tables Icon

Table 8 Experimental Setup and S/N Ratio

Tables Icon

Table 9 ANOVA for All Objectives

Tables Icon

Table 10 Noninferior Design Set

Tables Icon

Table 11 Robustness Experiment for Initial Conditions and the Noninferior Design Set

Tables Icon

Table 12 Performance Evaluation of the Initial Conditions and the Noninferior Design Set

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

OPT ( v ) = MTF ( v ) exp [ i PTF ( v ) ] ,
MTF = M i / M o .
MTF ( u , v ) = FFT [ I ( x , y ) ] ,
MF = 0 2 π ρ 1 ρ 2 MTF ( ρ , θ ) ρ d ρ d θ ,
LTB S / N = 10 log ( 1 n i = 1 n 1 y i 2 ) ,
A = 5.1 mm , 19.3 B 19.5 mm , C = 4.5 mm ,

Metrics