Abstract

Al2O3 and TiO2 thin films have been deposited on Si wafers, quartz, BK7 glass, and polycarbonate substrates by atomic layer deposition (ALD). The refractive indices and growth rates of the materials have been determined by spectroscopic ellipsometry and transmission electron microscopy. The influence of substrate temperature and precursor on the refractive indices has been investigated. The refractive index of TiO2 significantly increases with temperature, whereas the Al2O3 films are temperature insensitive. The films deposited using H2O2 as oxygen source show a slightly higher refractive index than the films prepared with H2O. Multilayer narrow-bandpass filters and broadband antireflective coatings have been designed and produced by ALD.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating for plastic optics,” Appl. Opt. 41, 3107-3110 (2002).
    [CrossRef] [PubMed]
  2. V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851-7857 (2006).
    [CrossRef] [PubMed]
  3. M. Yang, A. Gatto, and N. Kaiser, “Design and deposition of vacuum-ultraviolet narrow-bandpass filters for analytical chemistry applications,” Appl. Opt. 45, 1359-1363 (2006).
    [CrossRef] [PubMed]
  4. F. Flory and L. Escouba, “Optical properties of nanostructured thin films,” Prog. Quantum Electron. 28, 89-112 (2004).
    [CrossRef]
  5. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667-675 (1995).
    [CrossRef] [PubMed]
  6. M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
    [CrossRef]
  7. D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
    [CrossRef]
  8. R. R. Willey, “Simulation of errors in the monitoring of narrow bandpass filters,” Appl. Opt. 41, 3193-3195 (2002).
    [CrossRef] [PubMed]
  9. R. R. Willey, “Monitoring thin films of the fence post design and its advantages for narrow bandpass filters,” Appl. Opt. 47, C147-C150 (2008).
    [CrossRef] [PubMed]
  10. R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).
    [CrossRef]
  11. J. H. Correia, A. R. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Transactions 4, 141-147 (2006).
    [CrossRef]
  12. J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).
  13. A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
    [CrossRef]

2008 (1)

2007 (1)

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
[CrossRef]

2006 (4)

2004 (1)

F. Flory and L. Escouba, “Optical properties of nanostructured thin films,” Prog. Quantum Electron. 28, 89-112 (2004).
[CrossRef]

2002 (2)

1997 (1)

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

1996 (1)

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

1995 (1)

Aarik, J.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

Aidla, A.

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

Correia, J. H.

J. H. Correia, A. R. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Transactions 4, 141-147 (2006).
[CrossRef]

Emadi, A. R.

J. H. Correia, A. R. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Transactions 4, 141-147 (2006).
[CrossRef]

Escouba, L.

F. Flory and L. Escouba, “Optical properties of nanostructured thin films,” Prog. Quantum Electron. 28, 89-112 (2004).
[CrossRef]

Flory, F.

F. Flory and L. Escouba, “Optical properties of nanostructured thin films,” Prog. Quantum Electron. 28, 89-112 (2004).
[CrossRef]

Gäbler, D.

Gatto, A.

Görtz, B.

Janicki, V.

Kaiser, N.

Kasikov, A.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Kiisler, A. A.

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

Knez, M.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
[CrossRef]

Lappschies, M.

Leitel, R.

Leskel, M.

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

Mändar, H.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Matero, R.

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

Moppel, M.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Nielsch, K.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
[CrossRef]

Niinistö, L.

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
[CrossRef]

Pärs, M.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Rickers, C.

Riihelä, D.

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

Ristau, D.

Ritala, M.

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

Sammelselg, W.

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

Schallenberg, U. B.

Schulz, U.

Stenzel, O.

Takashashi, H.

Uustare, T.

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

Uustare, U.

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Vergöhl, M.

Wilbrandt, S.

Willey, R. R.

Wolffenbuttel, R. F.

J. H. Correia, A. R. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Transactions 4, 141-147 (2006).
[CrossRef]

Yang, M.

Adv. Mater. (1)

M. Knez, K. Nielsch, and L. Niinistö, “Synthesis and surface engineering of complex nanostructures by atomic layer deposition,” Adv. Mater. 19, 3425-3438 (2007).
[CrossRef]

Appl. Opt. (6)

ECS Transactions (1)

J. H. Correia, A. R. Emadi, and R. F. Wolffenbuttel, “UV bandpass optical filter for microspectrometers,” ECS Transactions 4, 141-147 (2006).
[CrossRef]

J. Phys. D (1)

A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and U. Uustare, “Refractive index gradients in TiO2 thin films grown by atomic layer deposition,” J. Phys. D 39, 54-60(2006).
[CrossRef]

Prog. Quantum Electron. (1)

F. Flory and L. Escouba, “Optical properties of nanostructured thin films,” Prog. Quantum Electron. 28, 89-112 (2004).
[CrossRef]

Thin Solid Films (2)

J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and W. Sammelselg, “Effect of crystal structure of TiO2 films grown by atomic layer deposition,” Thin Solid Films 305, 270-273 (1997).

D. Riihelä, M. Ritala, R. Matero, and M. Leskel, “Introducing atomic layer epitaxy for the deposition of optical thin films,” Thin Solid Films 289, 250-255 (1996).
[CrossRef]

Other (1)

R. R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dispersion curves of (a)  Al 2 O 3 and (b)  TiO 2 as functions of substrate temperature determined by spectroscopic ellipsometry. The black curves correspond to the refractive indices measured on the Si wafer, whereas the gray curves depict the corresponding data on BK7 glass. The ALD deposition was done with H 2 O as precursor for oxygen source (plain curves) or H 2 O 2 (curves with squares, shown only for 120 ° C ). Note the different scale of the refractive index.

Fig. 2
Fig. 2

TEM micrograph of a TiO 2 / Al 2 O 3 bilayer on the Si wafer. The native SiO 2 layer of 1.5 nm can be observed. The scale bar is 200 nm .

Fig. 3
Fig. 3

Calculated transmittance of the target NBPF as function of the ( 2 L ) layer thickness. The bandpass wavelength shifts to higher wavelength with increasing thickness.

Fig. 4
Fig. 4

Transmittance spectra of the NBPF optics of the five dichroic filters. The spectra are offset by one for clarity. The doted curves correspond to the experimental data, and the plain curves correspond to the calculated spectrum. The bandpass wavelength is shifted from 469 to 485 nm .

Fig. 5
Fig. 5

Selected transmittance spectra of the NBPF optics [samples 1 (thick curve), 2 (medium curve), and 3 (thin curve)] recorded from a portion of the substrate where the coating has been applied on both sides. Such coatings would be an approach to produce edge filters.

Fig. 6
Fig. 6

Transmittance spectra of the antireflective coating samples. The uncoated reference spectra (plain curve) are included for PC, BK7 glass (BK7), and quartz (Q). The single-side coating is depicted by “s” and filled symbols, and the double-side coating is depicted by “d” and open symbols. The spectra of the quartz samples are offset by one for clarity.

Tables (1)

Tables Icon

Table 1 Individual Layer Thicknesses of the Narrow-Bandpass Filter Samples Calculated through a Fit of the Transmittance Spectra (see Fig. 4) a

Metrics