Abstract

We demonstrate fast, efficient beam steering using a single 1×32 analog ferroelectric liquid crystal (FLC) spatial light modulator. A high-tilt FLC material with 82° optic-axis switching provides, in a reflective-mode device with a passive quarter-wave retarder between a half-wave FLC layer and a mirror, 91% of full 02π phase modulation. Electronic drive based on applied charge gives 200μs response-time analog modulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
    [CrossRef]
  2. B. Fracasso, J. L. de Bougrenet de La Tocnaye, and P. Ambs, “Recording reconfigurable binary computer-generated holograms on bistable optically addressed ferroelectric liquid-crystal spatial light modulators,” Opt. Lett. 15, 1473-1475 (1990).
    [CrossRef] [PubMed]
  3. D. C. O'Brien, R. J. Mears, T. D. Wilkinson, and W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795-2803 (1994).
    [CrossRef] [PubMed]
  4. H. Yamazaki and S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137-8143 (1995).
    [CrossRef] [PubMed]
  5. P. Berthelé, B. Fracasso, and J.-L. de Bougrenet de La Tocnaye, “Design and characterization of a liquid-crystal spatial light modulator for a polarization-insensitive optical space switch,” Appl. Opt. 37, 5461-5468 (1998).
    [CrossRef]
  6. M. J. O'Callaghan and M. A. Handschy, “Diffractive ferroelectric liquid-crystal shutters for unpolarized light,” Opt. Lett. 16, 770-772 (1991).
    [CrossRef] [PubMed]
  7. M. O. Freeman, T. A. Brown, and D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917-3929 (1992).
    [CrossRef] [PubMed]
  8. S. E. Broomfield, M. A. A. Neil, and E. G. S. Paige, “Programmable multiple-level phase modulation that uses ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 6652- (1995).
    [CrossRef] [PubMed]
  9. D. Engström, S. Hård, P. Rudquist, K. D'Havé, T. Matuszczyk, M. Skeren, and B. Löfving, “Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 43, 1559-1569 (2004).
    [CrossRef] [PubMed]
  10. M. J. O'Callaghan, “Ferroelectric liquid crystal SLMs for beam steering, field-of-view steering, and computer-generated holograms,” Supplement to Opt. Photon. News 9(9), 105(1991).
  11. J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
    [CrossRef]
  12. S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
    [CrossRef]
  13. D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
    [CrossRef] [PubMed]
  14. M. J. O'Callaghan, “Switching dynamics and surface forces in thresholdless “V-shaped” switching ferroelectric liquid crystals,” Phys. Rev. E 67, 011710 (2003).
    [CrossRef]
  15. M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
    [CrossRef]
  16. M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
    [CrossRef]
  17. D. Engström, P. Rudquist, J. Bengtsson, K. D'havé, and S. Galt, “Analog low-loss full-range phase modulation by utilizing a V-shaped switched ferroelectric liquid crystal cell in reflective mode,” Opt. Lett. 31, 2906-2908 (2006).
    [CrossRef] [PubMed]
  18. D. Williams and L. E. Davis, “Alignment of chiral smectic liquid crystals,” J. Phys. D 19, L34-L41 (1986).
    [CrossRef]
  19. R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
    [CrossRef]
  20. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45, 7195-7204 (2006).
    [CrossRef] [PubMed]
  21. D. Engström, J. Bengtsson, E. Eriksson, and M. Goksör, “Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator,” Opt. Express 16, 18275-18287 (2008).
    [CrossRef] [PubMed]

2008 (1)

2006 (3)

2004 (3)

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

D. Engström, S. Hård, P. Rudquist, K. D'Havé, T. Matuszczyk, M. Skeren, and B. Löfving, “Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 43, 1559-1569 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

M. J. O'Callaghan, “Switching dynamics and surface forces in thresholdless “V-shaped” switching ferroelectric liquid crystals,” Phys. Rev. E 67, 011710 (2003).
[CrossRef]

1998 (1)

1997 (1)

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

1996 (2)

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

1995 (2)

1994 (1)

1992 (1)

1991 (2)

M. J. O'Callaghan and M. A. Handschy, “Diffractive ferroelectric liquid-crystal shutters for unpolarized light,” Opt. Lett. 16, 770-772 (1991).
[CrossRef] [PubMed]

M. J. O'Callaghan, “Ferroelectric liquid crystal SLMs for beam steering, field-of-view steering, and computer-generated holograms,” Supplement to Opt. Photon. News 9(9), 105(1991).

1990 (1)

1986 (1)

D. Williams and L. E. Davis, “Alignment of chiral smectic liquid crystals,” J. Phys. D 19, L34-L41 (1986).
[CrossRef]

Ambs, P.

Bardon, S.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Bengtsson, J.

Berthelé, P.

Broomfield, S. E.

Brown, T. A.

Clark, N. A.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Coleman, D.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Crossland, W. A.

Dabrowski, R.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Davis, L. E.

D. Williams and L. E. Davis, “Alignment of chiral smectic liquid crystals,” J. Phys. D 19, L34-L41 (1986).
[CrossRef]

de Bougrenet de La Tocnaye, J. L.

de Bougrenet de La Tocnaye, J.-L.

D'havé, K.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Engström, D.

Eriksson, E.

Fracasso, B.

Freeman, M. O.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Fukuda, A.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Fukushima, S.

Galt, S.

Gasowska, J.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Goksör, M.

Handschy, M. A.

Hård, S.

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Iimura, N.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Inui, S.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Iwane, H.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Johnson, K. M.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Löfving, B.

Maclennan, J. E.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Matuszczyk, T.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Mears, R. J.

Milewski, G.

Miyachi, K.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

More, K.

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

Mueller, D.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Nakata, M.

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

Neil, M. A. A.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

O'Brien, D. C.

O'Callaghan, M. J.

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

M. J. O'Callaghan, “Switching dynamics and surface forces in thresholdless “V-shaped” switching ferroelectric liquid crystals,” Phys. Rev. E 67, 011710 (2003).
[CrossRef]

M. J. O'Callaghan, “Ferroelectric liquid crystal SLMs for beam steering, field-of-view steering, and computer-generated holograms,” Supplement to Opt. Photon. News 9(9), 105(1991).

M. J. O'Callaghan and M. A. Handschy, “Diffractive ferroelectric liquid-crystal shutters for unpolarized light,” Opt. Lett. 16, 770-772 (1991).
[CrossRef] [PubMed]

Otón, J.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Paige, E. G. S.

Piecek, W.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Przedmojski, J.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Rudquist, P.

Serati, S. A.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Shao, R. F.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Sharp, G. D.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Skeren, M.

Stockley, J. E.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Suzuki, T.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Takanishi, Y.

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

Thurmes, W.

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

Tykarsk, M.

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Walba, D. M.

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

M. O. Freeman, T. A. Brown, and D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917-3929 (1992).
[CrossRef] [PubMed]

Walker, C.

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

Walker, C. M.

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

Walsh, K. F.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Wand, M.

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

Wand, M. D.

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

Wang, P.

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Wilkinson, T. D.

Williams, D.

D. Williams and L. E. Davis, “Alignment of chiral smectic liquid crystals,” J. Phys. D 19, L34-L41 (1986).
[CrossRef]

Yamazaki, H.

Appl. Opt. (7)

M. O. Freeman, T. A. Brown, and D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917-3929 (1992).
[CrossRef] [PubMed]

D. C. O'Brien, R. J. Mears, T. D. Wilkinson, and W. A. Crossland, “Dynamic holographic interconnects that use ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 33, 2795-2803 (1994).
[CrossRef] [PubMed]

S. E. Broomfield, M. A. A. Neil, and E. G. S. Paige, “Programmable multiple-level phase modulation that uses ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 6652- (1995).
[CrossRef] [PubMed]

H. Yamazaki and S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 34, 8137-8143 (1995).
[CrossRef] [PubMed]

P. Berthelé, B. Fracasso, and J.-L. de Bougrenet de La Tocnaye, “Design and characterization of a liquid-crystal spatial light modulator for a polarization-insensitive optical space switch,” Appl. Opt. 37, 5461-5468 (1998).
[CrossRef]

D. Engström, S. Hård, P. Rudquist, K. D'Havé, T. Matuszczyk, M. Skeren, and B. Löfving, “Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 43, 1559-1569 (2004).
[CrossRef] [PubMed]

D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45, 7195-7204 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. J. O'Callaghan, M. D. Wand, C. M. Walker, and M. Nakata, “Charge controlled, fixed optic axis analog ('v-shaped') switching of a bent-core ferroelectric liquid crystal,” Appl. Phys. Lett. 85, 6344-6346 (2004).
[CrossRef]

Displays (1)

R. Dąbrowski, J. Gąsowska, J. Otón, W. Piecek, J. Przedmojski, and M. Tykarsk, “High tilted antiferroelectric liquid crystalline materials,” Displays 25, 9-19 (2004).
[CrossRef]

Ferroelectrics (1)

M. J. O'Callaghan, M. Wand, C. Walker, W. Thurmes, and K. More, “High-tilt, high-Ps, de Vries FLCs for analog electro-optic phase modulation,” Ferroelectrics 343, 201-207(2006).
[CrossRef]

J. Mater. Chem. (1)

S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, and A. Fukuda, “Thresholdless antiferroelectricity in liquid crystals and its application to displays,” J. Mater. Chem. 6, 671-673 (1996).
[CrossRef]

J. Phys. D (1)

D. Williams and L. E. Davis, “Alignment of chiral smectic liquid crystals,” J. Phys. D 19, L34-L41 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

M. J. O'Callaghan, “Switching dynamics and surface forces in thresholdless “V-shaped” switching ferroelectric liquid crystals,” Phys. Rev. E 67, 011710 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R. F. Shao, S. Bardon, and D. M. Walba, “Control of molecular orientation in electrostatically stabilized ferroelectric liquid crystals,” Phys. Rev. Lett. 91, 175505 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Proc. SPIE (1)

J. E. Stockley, S. A. Serati, G. D. Sharp, P. Wang, K. F. Walsh, and K. M. Johnson, “Broadband beam steering,” Proc. SPIE 3131, 111-123 (1997).
[CrossRef]

Supplement to Opt. Photon. News (1)

M. J. O'Callaghan, “Ferroelectric liquid crystal SLMs for beam steering, field-of-view steering, and computer-generated holograms,” Supplement to Opt. Photon. News 9(9), 105(1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

FLC array pixel geometry.

Fig. 2
Fig. 2

(a) FLC pixel-drive circuit (one of 32 channels), (b) driver large-signal response (left) and small-signal response (right).

Fig. 3
Fig. 3

FLC array optic axis orientation (a) and retardation (b) as a function of drive charge. Inset: crossed-polarization transmission as a function of wavelength for three drive levels.

Fig. 4
Fig. 4

OPA optical setup: QWP 1 , 2 , quarter-wave plates (for λ = 633 nm ), M 1 , 2 , 3 , mirrors.

Fig. 5
Fig. 5

Measured (a) phase and (b) amplitude modulation of the OPA as functions of drive.

Fig. 6
Fig. 6

OPA beam steering: (a) addition of phase steps to tilt incident plane waves, (b) calculated shape of the deflected beam (solid) modulated by the OPA intensity envelope (dotted).

Fig. 7
Fig. 7

Five phase structures (left) and their corresponding measured diffraction patterns (right).

Fig. 8
Fig. 8

(a) Logarithm base 10 of normalized intensity for 101 phase structures. (b) Measured fraction of far-field power in the steered beam as a function of the aiming angle α i (solid curve); theoretically expected sinc 2 [ α / ( 2 α max ) ] (dotted curve). The inset in (b) shows the total collected scaled intensity W i / W 51 as a function of the aiming angle α i .

Fig. 9
Fig. 9

Detector responses to step change in OPA steering angle. First detector (downward curve) at initial steering angle α = 0.21 α max ; the second detector (upward curve) is at final steering angle α = + 0.89 α max .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

isotropic 95 ° C smectic - A 86 ° C smectic - C * 30 ° C crystal .
I = I 0 sin 2 ( Γ / 2 ) sin 2 [ 2 ( φ φ P ) ]
Γ ( q ) = 2 sin 1 I I + I | |

Metrics