Abstract

In this paper a novel construction of an active quenching circuit intended for single-photon detection is presented, along with a few original methods for its evaluation. The circuit has been combined with a standard avalanche photodiode C30902S to form a single-photon detector. This detector has a dead time of 39ns, maximum random counting frequency of 14MHz, small afterpulsing probability, an estimated peak detection efficiency of over 20%, and a dark count rate of less than 100Hz. This simple and robust active quenching circuit can be built from off-the-shelf electronic components and is presented with the detailed schematic diagram.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
    [CrossRef]
  3. A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865-3871 (2004).
    [CrossRef] [PubMed]
  4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
    [CrossRef]
  5. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894-3900 (1993).
    [PubMed]
  6. R. G. W. Brown, K. D. Ridley, and J. G. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 1: Passive quenching,” Appl. Opt. 25, 4122-4126 (1986).
    [CrossRef] [PubMed]
  7. “Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S,” data sheet, EG&G Canada, 1 January 1991.
  8. K. Schaetzel, R. Kalstroem, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon-correlation functions,” J. Opt. Soc. Am. B 6, 937-947 (1989).
    [CrossRef]
  9. R. G. W. Brown, R. Jones, J. G. Rarity, and K. D. Ridley, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383-2389 (1987).
    [CrossRef] [PubMed]
  10. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
    [CrossRef]
  11. S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
    [CrossRef]
  12. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956-1976 (1996).
    [CrossRef] [PubMed]
  13. F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
    [CrossRef]
  14. V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).
  15. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express 14, 5021-5030 (2006).
    [CrossRef] [PubMed]
  16. A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
    [CrossRef]
  17. M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.
  18. Hamamatsu Photonics K.K., “Photon counting using photomultiplier tubes,” Technical Note TPHO9001E04(2005).
  19. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
    [CrossRef]
  20. M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
    [CrossRef] [PubMed]
  21. K. P. Aicher, Hamamatsu, private communication, kpaicher@hamamatsu.de

2007 (2)

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express 14, 5021-5030 (2006).
[CrossRef] [PubMed]

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

2004 (1)

2002 (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

2000 (2)

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

1996 (1)

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1993 (1)

1989 (1)

1987 (1)

1986 (1)

1982 (1)

S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
[CrossRef]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
[CrossRef]

Achleitner, U.

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

Ahrens, J.

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Böhm, H. R.

Borodin, A.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Brown, R. G. W.

Cova, S.

A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express 14, 5021-5030 (2006).
[CrossRef] [PubMed]

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
[CrossRef]

Dautet, H.

Deschamps, P.

Dhulla, V. H.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Dion, B.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Fedrizzi, A.

Gallivanoni, A.

Gavrilov, D.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Ghioni, M.

Gisin, N.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Giudice, A. C.

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

Gorbovitski, B.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Gorfinkel, V.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Gudkov, G.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Jennewein, T.

Jones, R.

Kalstroem, R.

Kosobokova, O.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Kurtsiefer, C.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Lacaita, A.

Longini, A.

S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
[CrossRef]

Lorünser, T.

MacGregor, A. D.

MacSween, D.

Matteo, A.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Maurhardt, O.

McIntyre, R. J.

Micanovic, S.

M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.

Monat, L.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Pauchard, A.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Peev, M.

Poppe, A.

Rarity, J. G.

Rech, I.

Resnati, D.

Ribordy, G.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Ridley, K. D.

Ripamonti, G.

S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
[CrossRef]

Rochas, A.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Rogina, B. M.

M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

Samori, C.

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Schaetzel, K.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Stampa, B.

Stepukhovich, A.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Stipcevic, M.

M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Suda, M.

Thew, R.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Trinkler, P.

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Trottier, C.

Tsupryk, A.

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

Ursin, R.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Webb, P. P.

Weihs, G.

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

Weinfurter, H.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865-3871 (2004).
[CrossRef] [PubMed]

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Zamboni, I.

M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.

Zappa, F.

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35, 1956-1976 (1996).
[CrossRef] [PubMed]

Zbinden, H.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Zeilinger, A.

A. Poppe, A. Fedrizzi, R. Ursin, H. R. Böhm, T. Lorünser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865-3871 (2004).
[CrossRef] [PubMed]

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Appl. Opt. (4)

IEEE Trans. Instrum. Meas. (1)

F. Zappa, M. Ghioni, S. Cova, C. Samori, and A. C. Giudice, “An integrated active-quenching circuit for single-photon avalanche diodes,” IEEE Trans. Instrum. Meas. 49, 1167-1175(2000).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longini, and G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. 29, 599-601 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc, Radiat. Transf. (1)

V. H. Dhulla, G. Gudkov, D. Gavrilov, A. Stepukhovich, A. Tsupryk, O. Kosobokova, A. Borodin, B. Gorbovitski, and V. Gorfinkel, “Single photon counting module based on large area APD and novel logic circuit for quench and reset pulse generation,” J. Quant. Spectrosc, Radiat. Transf. 13, 926-933(2007).

New J. Phys. (1)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug & play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773-R776 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Rochas, A. Pauchard, L. Monat, A. Matteo, P. Trinkler, R. Thew, and G. Ribordy, “Ultra-compact CMOS single-photon detector,” Proc. SPIE 6372, 63720N (2006).
[CrossRef]

Rev. Sci. Instrum. (2)

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675-1680(2000).
[CrossRef]

M. Stipcevic and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

Rev. Sci. tpdel Instrum. (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond rsolution with single-photon avalanche diodes,” Rev. Sci. tpdel Instrum. 52, 408-412 (1981).
[CrossRef]

Other (4)

K. P. Aicher, Hamamatsu, private communication, kpaicher@hamamatsu.de

M. Stipcevic, S. Micanovic, and I. Zamboni are preparing a manuscript to be called “A method of precise measurement of the light output of a LED over 5 orders of magnitude with application to measurement of linearity of single photon detectors”.

Hamamatsu Photonics K.K., “Photon counting using photomultiplier tubes,” Technical Note TPHO9001E04(2005).

“Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S,” data sheet, EG&G Canada, 1 January 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Typical passive quenching circuit for single-photon detection.

Fig. 2
Fig. 2

Active quenching circuit.

Fig. 3
Fig. 3

Digital recording of pulses at the output of the AQ circuit and at the point C, following a detected photon.

Fig. 4
Fig. 4

Experimental setup for evaluating of the AQ circuit. U/I, voltage-to-current converter; T A M B , ambient temperature sensor; HV562, high voltage supply. Other abbreviations defined in text.

Fig. 5
Fig. 5

Light versus current characteristic of the temperature-stabilized LED module. The measurement points (dots) and the fitted polynomial curve are shown.

Fig. 6
Fig. 6

(a) Breakdown voltage, V BR , as a function of the SPAD temperature. The solid curve is a linear fit through the measurement points indicating a temperature coefficient of 0.655 V / K . (b) Response to a constant light at constant overvoltage as a function of operating temperature.

Fig. 7
Fig. 7

(a) Afterpulse measuring circuit. (b) Afterpulsing probability as a function of overvoltage.

Fig. 8
Fig. 8

Frequency of dark counts as a function of the temperature of the SPAD.

Fig. 9
Fig. 9

Dark count (a) and the signal (b) of the SPCM as functions of the overvoltage at a fixed temperature of the SPAD. The signal is defined as the dark count subtracted response of the SPCM to a faint light source, yielding 30.000 detected photons per second.

Fig. 10
Fig. 10

(a) Signal/noise ratio of the SPCM as a function of temperature of the SPAD. (b) SNR as a function of the detection frequency. All functions are normalized to 1 at V over = 3.5 V .

Fig. 11
Fig. 11

Pileup of the output signal of the AQ circuit, corresponding to many single-photon detection events, shown on the digital storage oscilloscope. The dead time of the photon detector, defined as the minimum time lag between the trigger and the next detections, is 39 ns .

Fig. 12
Fig. 12

Measured frequency at the output of the photon counter ( f meas ) plotted against the frequency of photons falling upon the SPAD ( f emit ). The points present actual measurement, whereas the solid curve depicts the detector’s response corrected for noise and dead time.

Fig. 13
Fig. 13

Highest attainable counting rate as a function of overvoltage made at three fixed operating temperatures of the SPAD.

Fig. 14
Fig. 14

Response of the SPCM photon detector module (a) and the photomultiplier tube based photon counter DM0016C (b) to a pulsed light (5 s low intensity, 5 s high intensity).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ V over I LATCH C SPAD .
f exp ( τ f ) = 2 f 1 f 2 ,
p A = 1 f 2 f 1 .
f meas = f dark + f true 1 + f true d ,
f corr = f meas f dark 1 f meas d .

Metrics