Abstract

A micromechanical optical modulator called a grating light modulator (GLM) with electrostatic actuation, fabricated by the conventional process, is described. The GLM is operated by the interaction of a stationary reflector and a movable sliding grating. The GLM is a micromechanical phase grating. The phase difference is determined by the slide of the movable part (upper grating), allowing different diffraction patterns of reflected light. In addition, 100% modulation in the first/zero order can act as an optical switch and produce bright or dark pixels in a projection display system. Built using microelectromechanical system technology, and designed to be manufactured using mainstream integrated circuit fabrication technology, a 256-pixel GLM array is fabricated. We also describe projection display applications of a GLM as a high efficiency spatial light modulator. The optimized display system with a GLM is theoretically discussed in detail. The single-color and three-color experimental results indicate that the GLM technology has characteristics that make it suitable for projection display applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
    [CrossRef]
  2. H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5000 lumen laser projectors,” in International Conference on Consumer Electronics, 2006 (IEEE, 2006), pp. 133-134.
  3. W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).
  4. M. C. Wu, S. Olav, and F. E. Joseph, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433-4453 (2006).
    [CrossRef]
  5. X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
    [CrossRef]
  6. S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
    [CrossRef]
  7. L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40(1997).
    [CrossRef]
  8. J. Zhang, “Optical analysis and experiments of MEMS-based grating light modulator for display applications,” Ph.D. dissertation (Chongqing University, 2006), pp. 70-80.
  9. Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
    [CrossRef] [PubMed]
  10. Z. H. Zhang, “Study on some key technologies of MOEMS-based grating moving light modulator array,” Ph.D. dissertation (Chongqing University, 2008), pp. 50-60 .
  11. J. Y. Sun, S. L. Huang, J. Zhang, Z. H. Zhang, and Y. Zhu, “Two-dimensional grating light modulator for projection display,” Appl. Opt. 47, 2813-2820 (2008).
    [CrossRef]
  12. J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).
  13. G. W. Joseph, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  14. L. V. Ng, Fourier Optics (Mechanics Industry Press, 1988).

2008 (1)

2006 (2)

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

M. C. Wu, S. Olav, and F. E. Joseph, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433-4453 (2006).
[CrossRef]

2004 (1)

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

2003 (2)

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

1997 (2)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40(1997).
[CrossRef]

Barbastathis, G.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

Bloom, D. M.

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

Chen, W. M.

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Fu, H. Q.

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40(1997).
[CrossRef]

Huang, S. L.

J. Y. Sun, S. L. Huang, J. Zhang, Z. H. Zhang, and Y. Zhu, “Two-dimensional grating light modulator for projection display,” Appl. Opt. 47, 2813-2820 (2008).
[CrossRef]

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Jeon, Y. B.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

Joseph, F. E.

Joseph, G. W.

G. W. Joseph, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

Kim, S.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

Kim, S.-G.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

Liu, A. Q.

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Liu, Z. S.

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Lu, C.

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Ng, L. V.

L. V. Ng, Fourier Optics (Mechanics Industry Press, 1988).

Olav, S.

Oniki, K.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5000 lumen laser projectors,” in International Conference on Consumer Electronics, 2006 (IEEE, 2006), pp. 133-134.

Shih, W.-C.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

Sun, J. Y.

Taguchi, A.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5000 lumen laser projectors,” in International Conference on Consumer Electronics, 2006 (IEEE, 2006), pp. 133-134.

Tamada, H.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5000 lumen laser projectors,” in International Conference on Consumer Electronics, 2006 (IEEE, 2006), pp. 133-134.

Tuller, H. L.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

Wang, F.

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Wong, C. W.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

Wu, M. C.

Wu, Y.

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Yan, X.

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Zhang, J.

J. Y. Sun, S. L. Huang, J. Zhang, Z. H. Zhang, and Y. Zhu, “Two-dimensional grating light modulator for projection display,” Appl. Opt. 47, 2813-2820 (2008).
[CrossRef]

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

J. Zhang, “Optical analysis and experiments of MEMS-based grating light modulator for display applications,” Ph.D. dissertation (Chongqing University, 2006), pp. 70-80.

Zhang, X. M.

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Zhang, Z. H.

J. Y. Sun, S. L. Huang, J. Zhang, Z. H. Zhang, and Y. Zhu, “Two-dimensional grating light modulator for projection display,” Appl. Opt. 47, 2813-2820 (2008).
[CrossRef]

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Z. H. Zhang, “Study on some key technologies of MOEMS-based grating moving light modulator array,” Ph.D. dissertation (Chongqing University, 2008), pp. 50-60 .

Zhu, Y.

Acta Opt. Sin. (1)

J. Zhang, S. L. Huang, X. Yan, W. M. Chen, Z. H. Zhang, and H. Q. Fu, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Appl. Opt. (1)

Inf. Sci. (N.Y.) (1)

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. (N.Y.) 149, 31-40 (2003).

J. Electroceram. (1)

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Proc. SPIE (2)

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40(1997).
[CrossRef]

Sens. Actuators A, Phys. (1)

X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sens. Actuators A, Phys. 108, 28-35(2003).
[CrossRef]

Other (6)

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5000 lumen laser projectors,” in International Conference on Consumer Electronics, 2006 (IEEE, 2006), pp. 133-134.

J. Zhang, “Optical analysis and experiments of MEMS-based grating light modulator for display applications,” Ph.D. dissertation (Chongqing University, 2006), pp. 70-80.

Z. H. Zhang, S. L. Huang, Y. Wu, X. Yan, and H. Q. Fu, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
[CrossRef] [PubMed]

Z. H. Zhang, “Study on some key technologies of MOEMS-based grating moving light modulator array,” Ph.D. dissertation (Chongqing University, 2008), pp. 50-60 .

G. W. Joseph, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

L. V. Ng, Fourier Optics (Mechanics Industry Press, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Single pixel of GLM structure; (b) GLM operation (dark and bright states with collection of zero/first diffractive light).

Fig. 2
Fig. 2

(a) Optical photograph of the GLM, (b) photograph of a mounted wire-bonded device.

Fig. 3
Fig. 3

(a) Control and drive circuit for GLM, (b) circuit designed and manufactured.

Fig. 4
Fig. 4

Schematic view of the light transmission when the filter is displaced.

Fig. 5
Fig. 5

(a) Simulation results of GLM imaging without a filter; (b) collecting ± 1 order, when the phase difference is ( 2 k 1 ) π ; (c) collecting ± 1 order, when the phase difference is 2 k π ; (d) collecting zero order, when the phase difference is ( 2 k 1 ) π ; (e) collecting zero order, when the phase difference is 2 k π .

Fig. 6
Fig. 6

(a) Experiment setup for the grating light modulator, (b) the whole SEM photograph of the 256-pixel grating light modulator array.

Fig. 7
Fig. 7

(a) Experimental result of the GLM based projection system collecting the first order diffraction light, (b) collecting the zero order diffraction light without the driving voltage, (c) collecting the zero order diffraction light after the voltage is applied on the lower-right three modulators.

Fig. 8
Fig. 8

(a) Schematic colorful projection display for GLM, (b) static GLM.

Fig. 9
Fig. 9

Diffraction pattern of the GLM when illuminated by the R, G, B laser.

Fig. 10
Fig. 10

(a) Projection images with a red laser as the light source, (b) projection images with a green laser as the light source, (c) projection images with a blue laser as the light source, (d) projection images with three lasers as the the light source.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U 1 ( x 1 , y 1 ) = exp ( j k d 0 ) j λ d 0 exp [ j k 2 d 0 ( x 1 2 + y 1 2 ) ] t ( x , y ) × exp [ j k 2 d 0 ( x 2 + y 2 ) ] exp [ j k d 0 ( x x 1 + y y 1 ) ] d x d y .
U 1 ( x 1 , y 1 ) = U 1 ( x 1 , y 1 ) exp [ j k 2 f ( x 1 2 + y 1 2 ) ] = exp ( j k d 0 ) j λ d 0 exp [ j k 2 d 0 ( x 1 2 + y 1 2 ) ] t ( x , y ) exp [ j k 2 d 0 ( x 2 + y 2 ) ] × exp [ j k d 0 ( x x 1 + y y 1 ) ] exp [ j k 2 f ( x 1 2 + y 1 2 ) ] d x d y .
U 2 ( x 2 , y 2 ) = 1 λ 2 d 0 d i exp [ j k 2 d 1 ( x 2 2 + y 2 2 ) ] t ( x , y ) × exp [ j k 2 ( 1 d 0 + 1 d i 1 f ) ( x 1 2 + y 1 2 ) ] exp [ j k 2 d 0 ( x 2 + y 2 ) ] × exp [ j k d 0 ( x x 1 + y y 1 ) ] exp [ j k d 1 ( x 1 x 2 + y 1 y 2 ) ] d x d y d x 1 d y 1 .
U ( x 2 , y 2 ) = M exp [ j k 2 d i ( x 2 2 + y 2 2 ) ] t ( x , y ) exp [ j k 2 d 0 ( x 2 + y 2 ) ] × exp { j 2 π [ ( M x + x 2 ) x ˜ 1 + ( M y + y 2 ) y ˜ 1 ] } d x d y d x ˜ 1 d y ˜ 1 .
exp { j 2 π [ ( M x + x ) x ˜ 1 + ( M y + y ) y ˜ 1 ] } d x ˜ 1 d y ˜ 1 = δ ( M x + x , M y + y ) ,
U ( x 2 , y 2 ) = 1 M exp [ j k 2 d 1 ( x 2 2 + y 2 2 ) ] exp [ j k 2 d 0 ( x 2 2 + y 2 2 M 2 ) ] t ( x 2 M , y 2 M ) .
I ( x 2 , y 2 ) = | U ( x 2 , y 2 ) | 2 = 1 M 2 | t ( x 2 M , y 2 M ) | 2 .

Metrics