Abstract

A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199nm with a power of 50mW was achieved at 2.4MHz PRF. The 1μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Watanabe, K. Hayasaka, H. Imajo, and S. Urabe, “Continuous-wave sum-frequency generation near 194 nm in β-BaB2O4 crystals with an enhancement cavity,” Opt. Lett. 17, 46-48 (1992).
    [CrossRef] [PubMed]
  2. D. J. Berkeland, F. C. Cruz, and J. C. Bergquist, “Sum-frequency generation of continuous-wave light at 194 nm,” Appl. Opt. 36, 4159-4162 (1997).
    [CrossRef] [PubMed]
  3. J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5 W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29, 92-94(2004).
    [CrossRef] [PubMed]
  4. T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.
  5. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
    [CrossRef]
  6. T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.
  7. F. D. Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30, 3299-3301 (2005).
    [CrossRef]
  8. S. Desmoulins and F. D. Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ-energy pulses,” Opt. Express 16, 2431-2437 (2008).
    [CrossRef] [PubMed]
  9. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32, 1551-1553(2007).
    [CrossRef] [PubMed]
  10. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, “High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100 ps pulse regime,” Opt. Lett. 32, 2115-2117 (2007).
    [CrossRef] [PubMed]
  11. F. D. Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1 ns pulses of 410, 160, and 190 kW peak-power at 532, 354, and 265 nm wavelength,” in Advanced Solid-State Photonics 2005 (Optical Society of America, 2005), paper ME3.
  12. A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
    [CrossRef]
  13. S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.
  14. Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.
  15. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2008 (2)

S. Desmoulins and F. D. Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ-energy pulses,” Opt. Express 16, 2431-2437 (2008).
[CrossRef] [PubMed]

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

2007 (2)

2005 (1)

2004 (1)

1997 (1)

1992 (1)

1966 (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Asakawa, Y.

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
[CrossRef]

Bergquist, J. C.

Berkeland, D. J.

Boyd, G. D.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
[CrossRef]

Brooks, C. D.

F. D. Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30, 3299-3301 (2005).
[CrossRef]

F. D. Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1 ns pulses of 410, 160, and 190 kW peak-power at 532, 354, and 265 nm wavelength,” in Advanced Solid-State Photonics 2005 (Optical Society of America, 2005), paper ME3.

Cruz, F. C.

Desmoulins, S.

Dudley, D.

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
[CrossRef]

Eguchi, N.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

Ermeneux, S.

Guina, M.

Hayasaka, K.

Hodgson, N.

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Hohmuth, R.

Imai, S.

S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Imai, Y.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

Imajo, H.

Inoue, H.

S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.

Kaneda, Y.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Kawai, H.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.

Kitano, H.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.

Kubota, S.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

Limpert, J.

Linke, S.

Matsuda, H.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

McLean, S.

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Nodop, D.

Nomura, T.

S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.

Obara, M.

Ohtsuki, T.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.

Owa, S.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.

Rademaker, K.

Richter, W.

Röser, F.

Rothhardt, J.

Sakuma, J.

Salin, F.

Sato, M.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

Schmidt, O.

Schreiber, T.

Shinozaki, T.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Starodoumov, A. N.

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Steinmetz, A.

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Sudmeyer, T.

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

Teodoro, F. D.

S. Desmoulins and F. D. Teodoro, “High-gain Er-doped fiber amplifier generating eye-safe MW peak-power, mJ-energy pulses,” Opt. Express 16, 2431-2437 (2008).
[CrossRef] [PubMed]

F. D. Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30, 3299-3301 (2005).
[CrossRef]

F. D. Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1 ns pulses of 410, 160, and 190 kW peak-power at 532, 354, and 265 nm wavelength,” in Advanced Solid-State Photonics 2005 (Optical Society of America, 2005), paper ME3.

Tojo, T.

S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.

Tünnermann, A.

Urabe, S.

Urata, Y.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Wada, S.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Wada, Y.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

Watanabe, M.

Yvernault, P.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109-124 (1966).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (1)

A. N. Starodoumov, D. Dudley, S. McLean, A. Steinmetz, and N. Hodgson “Hybrid fiber MOPA-bulk amplifier system for frequency conversion,” Proc. SPIE 6871, 68710V(2008).
[CrossRef]

Other (6)

S. Imai, H. Inoue, T. Nomura, and T. Tojo, “CW 198.5 nm-light generation in CLBO,” in Advanced Solid-State Photonics, Vol. 83 of Trends in Optics and Photonics Series (Optical Society of America2003), pp. 380-383.

Y. Wada, T. Shinozaki, Y. Urata, Y. Kaneda, S. Wada, and S. Imai, “Polarization-maintaining 1064 nm fiber MOPA system with narrow bandwidth for wavelength conversion,” in Advanced Solid-State Photonics (Optical Society of America, 2007), paper MB15.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

T. Sudmeyer, Y. Imai, H. Matsuda, N. Eguchi, M. Sato, and S. Kubota, “12 W continuous-wave 266 nm deep-UV generation through 24 W single frequency 1064 nm light from a fiber MOPA,” in Conference on Laser and Electro-Optics, OSA Technical Digest (Optical Society of America, 2007), paper CTuD1.

T. Ohtsuki, H. Kitano, H. Kawai, and S. Owa, 193 nm “Generation by eighth hamonics of Er3+-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics Series, postconference edition (Optical Society of America, 2000), pp. 109-110.

F. D. Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1 ns pulses of 410, 160, and 190 kW peak-power at 532, 354, and 265 nm wavelength,” in Advanced Solid-State Photonics 2005 (Optical Society of America, 2005), paper ME3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Overview of the DUV laser based on fiber/ bulk MOPA systems.

Fig. 2
Fig. 2

Scheme of a fiber MOPA section of the 1 μm light source.

Fig. 3
Fig. 3

Emission spectra of the 1 μm oscillator with seed (solid line) and without seed (dotted line).

Fig. 4
Fig. 4

Properties of the Yb-doped fiber power amplifier: (a) output power and (b) emission spectrum.

Fig. 5
Fig. 5

Setup of the Nd : YV O 4 double-pass solid-state amplifier. HR, high reflector; HWP, half-wave plate; Pol, polarizer.

Fig. 6
Fig. 6

Properties of the Nd : YV O 4 solid-state amplifier: (a) output power and (b) emission spectrum.

Fig. 7
Fig. 7

Setup of the nonlinear upconversion stages. CL and DM indicate cylindrical lens and dichroic mirror, respectively. PPLN, periodically poled lithium niobate.

Fig. 8
Fig. 8

Output power of the harmonic generation stages. Second-harmonic output (circles) and fourth-harmonic output (squares) are shown as a function of fundamental power.

Fig. 9
Fig. 9

Properties of 1.5 μm MOPA and its second harmonics: (a) output power of Er-doped fiber amplifier (circles) and the second harmonics (squares) and (b) emission spectrum of the amplifier.

Fig. 10
Fig. 10

Transversal intensity distribution profile of the 199 nm beam.

Metrics