Abstract

Fiber Bragg gratings, and more specifically, superimposed fiber Bragg gratings (SIFBGs), are attractive commercial solutions for several multiband telecommunication applications. However, as a part of a telecommunication system, the polarization dependent properties present in SIFBGs due to the fabrication process dramatically limit their possible implementation in high bit rate optical communications. The development of techniques for the reduction of differential group delay (DGD) and the polarization dependent loss (PDL) in system components is then crucial. We present a simple method to reduce the DGD and the PDL induced during the fabrication of SIFBGs. The proposed fabrication method consists of irradiating the fiber core from different well controlled directions depending on the total number of expositions. We theoretically predict and experimentally demonstrate a reduction of the DGD and the PDL after each illumination.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ayotte, M. Rochette, M. J. Magne, L. A. Rusch, and S. LaRochelle, “Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG,” J. Lightwave Technol. 23, 724-731 (2005).
    [CrossRef]
  2. R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
    [CrossRef]
  3. J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
    [CrossRef]
  4. V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15, 10878-10889 (2007).
    [CrossRef] [PubMed]
  5. T. Erdogan and V. Mizrahi, “Characterization of UV-induced birefringence in photosensible Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100-2105 (1994).
    [CrossRef]
  6. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Reed, and P. L. Lemaire, and S. G. Kosinski, “Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method,” Opt. Lett. 19, 1260-1262 (1994).
    [CrossRef] [PubMed]
  7. N. Belhadj, S. LaRochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express 12, 1720-1726(2004).
    [CrossRef] [PubMed]
  8. H. Renner, “Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers,” Opt. Express 9, 546-560 (2001).
    [CrossRef] [PubMed]
  9. S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
    [CrossRef]
  10. Y. Wang, C.-Q. Xu and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17, 1220-1222 (2005).
    [CrossRef]
  11. S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.
  12. K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, “Three-step design optimization for multi-channel fiber Bragg gratings,” Opt. Express 11, 1029-1038 (2003).
    [CrossRef] [PubMed]
  13. B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photonics Technol. Lett. 4, 451-453(1992).
  14. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technol. Lett. 4, 451-453 (1992).
    [CrossRef]

2007 (2)

V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15, 10878-10889 (2007).
[CrossRef] [PubMed]

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

2005 (2)

2004 (2)

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

N. Belhadj, S. LaRochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express 12, 1720-1726(2004).
[CrossRef] [PubMed]

2003 (2)

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov, “Three-step design optimization for multi-channel fiber Bragg gratings,” Opt. Express 11, 1029-1038 (2003).
[CrossRef] [PubMed]

2001 (1)

1994 (2)

1992 (2)

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photonics Technol. Lett. 4, 451-453(1992).

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technol. Lett. 4, 451-453 (1992).
[CrossRef]

Ayotte, S.

Azaña, J.

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Belhadj, N.

Bette, S.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Buryak, A.

Capmany, J.

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Castonguay, I.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

Caucheteur, C.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Chen, L. R.

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Dossou, K.

Doucet, S.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

Erdogan, T.

García-Muñoz, V.

V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15, 10878-10889 (2007).
[CrossRef] [PubMed]

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Heffner, B. L.

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photonics Technol. Lett. 4, 451-453(1992).

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technol. Lett. 4, 451-453 (1992).
[CrossRef]

Inniss, D.

Izraelian, V.

Y. Wang, C.-Q. Xu and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17, 1220-1222 (2005).
[CrossRef]

Kockaert, P.

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Kolossovski, K.

Kosinski, S. G.

LaRochelle, S.

S. Ayotte, M. Rochette, M. J. Magne, L. A. Rusch, and S. LaRochelle, “Experimental verification and capacity prediction of FE-OCDMA using superimposed FBG,” J. Lightwave Technol. 23, 724-731 (2005).
[CrossRef]

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

N. Belhadj, S. LaRochelle, and K. Dossou, “Form birefringence in UV-exposed photosensitive fibers computed using a higher order finite element method,” Opt. Express 12, 1720-1726(2004).
[CrossRef] [PubMed]

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Lemaire, P. L.

Magne, M. J.

Megret, P.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

Mégret, P.

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Mizrahi, V.

Muriel, M. A.

V. García-Muñoz, M. A. Preciado, and M. A. Muriel, “Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings,” Opt. Express 15, 10878-10889 (2007).
[CrossRef] [PubMed]

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Olcina, R. Garcia

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Preciado, M. A.

Reed, W. A.

Renner, H.

Rochette, M.

Rusch, L. A.

Sales, S.

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Sammut, R.

Slavik, R.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Stepanov, D.

Vengsarkar, A. M.

Wang, Y.

Y. Wang, C.-Q. Xu and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17, 1220-1222 (2005).
[CrossRef]

Wuilpart, M.

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Xu, C.-Q.

Y. Wang, C.-Q. Xu and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17, 1220-1222 (2005).
[CrossRef]

Zhong, Q.

IEEE Photonics Technol. Lett. (5)

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of a large-band distributed Fabry-Pérot structure,” IEEE Photonics Technol. Lett. 16, 1017-1019 (2004).
[CrossRef]

J. Azaña, P. Kockaert, R. Slavik, L. R. Chen, and S. LaRochelle, “Generation of a 100 GHz optical pulse train by pulse repetition-rate multiplication using superimposed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 15, 413-415 (2003).
[CrossRef]

Y. Wang, C.-Q. Xu and V. Izraelian, “Bragg gratings in spun fibers,” IEEE Photonics Technol. Lett. 17, 1220-1222 (2005).
[CrossRef]

B. L. Heffner, “Deterministic and analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photonics Technol. Lett. 4, 451-453(1992).

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technol. Lett. 4, 451-453 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Bette, C. Caucheteur, M. Wuilpart, and P. Megret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Commun. 269, 331-337 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

S. Bette, C. Caucheteur, V. García-Muñoz, R. Garcia Olcina, M. Wuilpart, S. Sales, J. Capmany, M. A. Muriel, and P. Mégret, “Experimental demonstration of the reduction of PDL and DGD in fiber Bragg gratings by using a twisted-fiber for the inscription,” in 34th European Conference on Optical Communication (IEEE, 2008), Vol. 3, pp. 157-158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index evolution for a standard triple SIFBG in a region with the illuminations in phase. (a) Maximum photoinduced index change: 1st FBG (blue line), 2nd FBG (green line), and 3rd FBG (red line). Inset: schema of the inscription. (b) Transversal RIP along a modulation period. The arrows show the position in the optical axis.

Fig. 2
Fig. 2

Refractive index evolution for a multidirectional triple SIFBG (120 deg rotation between inscriptions) in a region with the illuminations in phase. (a) Maximum photoinduced index change: 1st FBG (blue line), 2nd FBG (green line), and 3rd FBG (red line). Inset: schema of the inscription. (b) Transversal RI profile along a modulation period. The arrows show the position in the optical axis.

Fig. 3
Fig. 3

Refractive index evolution for a standard triple SIFBG in a region with a phase mismatching of 2 π / 3 between successive illuminations. (a) Maximum photoinduced index change: 1st FBG (blue line), 2nd FBG (green line), and 3rd FBG (red line). Inset: schema of the inscription. (b) Transversal RIP along a modulation period. The arrows show the position in the optical axis.

Fig. 4
Fig. 4

Refractive index evolution for a multidirectional triple SIFBG (120 deg rotation between the inscriptions) in a region with a phase mismatching of 2 π / 3 between successive illuminations. (a) Maximum photoinduced index change: 1st FBG (blue line), 2nd FBG (green line), and 3rd FBG (red line). Inset: schema of the inscription. (b) Transversal RI profile along a modulation period. The arrows show the position in the optical axis.

Fig. 5
Fig. 5

Transmissivity, DGD, and PDL after each illumination for a triple SIFBG fabricated using the standard setup.

Fig. 6
Fig. 6

Transmissivity, DGD, and PDL after each illumination for a triple SIFBG fabricated using the multidirectional setup (120 deg rotation between inscriptions).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n i ( x i , y i ; z ) = Δ n p i ( z ) exp ( 2 α ( x i + ρ 2 y i 2 ) ) ,
Δ n p i ( z ) = ( Δ n p 0 i / 2 ) ( 1 + cos ( 2 π z / Λ i ) ) , 0 z L ,
Δ n ( x , y ; z ) = i = 1 N ( Δ n p 0 i / 2 ) ( 1 + cos ( 2 π z / Λ i ) ) exp ( 2 α ( x i + ρ 2 y i 2 ) ) ,
( x i y i ) = ( cos γ i sin γ i sin γ i cos γ i ) ( x y ) .
PDL ( λ ) = 10 log 10 ( a b s ( η 1 ( λ ) ) a b s ( η 2 ( λ ) ) ) ,
DGD ( ω ) = | arg ( μ 1 ( ω ) / μ 2 ( ω ) ) δ ω | ,

Metrics