Abstract

In this paper, a design method for a multiwavelength photon sieve is described based on a random-area-divided approach, where the whole aperture of a multiwavelength imaging photon sieve is divided into multiple discrete spaces corresponding to the number of the selected working wavelengths. The micropinhole distribution in each discrete space can be calculated for the defined wavelength with one fixed focal length in terms of the normal design for photon sieve. A three-wavelength photon sieve was designed and fabricated in the lab, and its imaging properties are analyzed in the experimental optical system with satisfactory results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Silvennoinen, V. Vetter, S. Heikki, H. Tuononen, M. Silvennoinen, K. Myller, L. Cvrcek, J. Vanek, and P. Prachar, “Sensing of human plasma filigbrinogen on polished, chemically etched and carbon treated titanium surfaces by diffractive optical element based sensor,” Opt. Express 16, 10130-10140 (2008).
    [CrossRef] [PubMed]
  2. A. J. Caley and M. R. Taghizadeh, “Diffractive optical elements for simultaneous operation in reflection and transmission,” Appl. Opt. 47, 1553-1558 (2008).
    [CrossRef] [PubMed]
  3. J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
    [CrossRef]
  4. T. G. Jabbour, “Axial filigeld shaping under high-numerical-aperture focusing,” Opt. Lett. 32, 527-529 (2007).
    [CrossRef] [PubMed]
  5. L. Shi, C. Du, X. Dong, Q. Deng, and X. Luo, “Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure,” Appl. Opt. 46, 8346-8350 (2007).
    [CrossRef] [PubMed]
  6. H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
    [CrossRef]
  7. G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.
  8. E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
    [CrossRef]
  9. E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
    [CrossRef]
  10. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
    [CrossRef] [PubMed]
  11. Y. Chen, C. Zhou, X. Luo, and C. Du, “Structured lens formed by a 2D square hole array in a metallic film,” Opt. Lett. 33, 753-755 (2008).
    [CrossRef] [PubMed]
  12. S. Yin, C. Zhou, X. Luo, and C. Du, “Imaging by a sub-wavelength metallic lens with large field of view,” Opt. Express 16, 2578-2583 (2008).
    [CrossRef] [PubMed]
  13. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20, 1005-1012 (2003).
    [CrossRef]
  14. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve:individual far-field model,” J. Opt. Soc. Am. A 19, 2387-2393 (2002).
    [CrossRef]

2008

2007

2003

2002

2001

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

2000

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

1995

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
[CrossRef]

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Anderson, E. H.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
[CrossRef]

Attwood, D.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Boegli, V.

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
[CrossRef]

Caley, A. J.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

A. J. Caley and M. R. Taghizadeh, “Diffractive optical elements for simultaneous operation in reflection and transmission,” Appl. Opt. 47, 1553-1558 (2008).
[CrossRef] [PubMed]

Cao, Q.

Chao, W.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Chen, Y.

Christ, O.

G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.

Cvrcek, L.

Dawson, M. D.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

Denbeaux, G.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Deng, Q.

Deng, Q. L.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Dong, X.

Dong, X. C.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Du, C.

Du, C. L.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Gao, H. T.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Girkin, J. M.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

Gu, E.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

Guttmann, P.

G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.

Harm, S.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Harteneck, B.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Heikki, S.

Jabbour, T. G.

Jahns, J.

Johnson, L.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Kipp, L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Lin, X. D.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Liu, J. S.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

Lucero, A.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Luo, X.

Muray, L. P.

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
[CrossRef]

Myller, K.

Olynick, D. L.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Pan, L.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Prachar, P.

Rudolph, D.

G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.

Schmahl, G.

G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.

Seemann, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Shi, L.

Silvennoinen, M.

Silvennoinen, R.

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Taghizadeh, M. R.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

A. J. Caley and M. R. Taghizadeh, “Diffractive optical elements for simultaneous operation in reflection and transmission,” Appl. Opt. 47, 1553-1558 (2008).
[CrossRef] [PubMed]

Tuononen, H.

Vanek, J.

Veklerov, E.

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Vetter, V.

Yin, S.

Zhang, Y. D.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Zhou, C.

Appl. Opt.

J. Opt. Soc. Am. A

J. Phys. D: Appl. Phys.

J. S. Liu, A. J. Caley, M. R. Taghizadeh, E. Gu, J. M. Girkin, and M. D. Dawson, “Design of diffractive optical elements for beam shaping of micro-pixellated LED light to a tightly focused spot,” J. Phys. D: Appl. Phys. 41, 094005 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

E. H. Anderson, V. Boegli, and L. P. Muray, “Electron beam lithography digital pattern generator and electronics for generalized curvilinear structures,” J. Vac. Sci. Technol. B 13, 2529-2534 (1995).
[CrossRef]

E. H. Anderson, D. L. Olynick, B. Harteneck, E. Veklerov, G. Denbeaux, W. Chao, A. Lucero, L. Johnson, and D. Attwood, “Nanofabrication and diffractive optics for high resolution x-ray applications,” J. Vac. Sci. Technol. B 18, 2970-2975 (2000).
[CrossRef]

Nature

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414, 184-188 (2001).
[CrossRef] [PubMed]

Opt. Eng.

H. T. Gao, X. C. Dong, Y. D. Zhang, Q. L. Deng, L. Pan, X. D. Lin, and C. L. Du, “A turbulence simulation plate based on irregular micro optical structures fabricated by mask moving technique,” Opt. Eng. 47, 016004 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

G. Schmahl, D. Rudolph, P. Guttmann, and O. Christ, “Zone plates for x-ray microscopy,” in X-Ray Microscopy, Vol. 43 of Springer Series in Optical Sciences, G. Schmahl and D. Rudolph, eds. (Springer-Verlag, 1984), pp. 63-74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Description of a multiwavelength photon sieve using the random-area-divided approach.

Fig. 2
Fig. 2

Design results of the multiple wavelength photon sieves for three wavelengths: (a) pinhole distribution of the first discrete part of the photon sieve for λ 1 , (b) pinhole distribution of the second discrete part of the photon sieve for λ 2 , (c) pinhole distribution of the third discrete part of the photon sieve for λ 3 , and (d) combined pinhole distribution of the one sieve for three wavelengths.

Fig. 3
Fig. 3

Intensity distributions of the MWPS and the chromatic characteristics. (a) Intensity distribution of MWPS on the optical axis of three wavelengths of light illumination. (b) Intensity distribution of MWPS on the focal plane with three wavelengths of light as light sources.

Fig. 4
Fig. 4

Photo of the fabricated multiwavelength photon sieve and its magnified image.

Fig. 5
Fig. 5

Experimental setup of the multiwavelength photon sieve imaging system.

Fig. 6
Fig. 6

1 : 1 scaled images of the resolution plate imaged by the photon sieve: (a) red light illumination, (b) green light illumination, (c) blue light illumination.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

r n 2 = 2 n f λ + n 2 λ 2 .
U n ( 0 , 0 ) d w J 1 ( π 2 d w ) ,
J 1
k ( L n + r n 2 2 q ) = 2 m π , J i n c ( k a n q R n ) > 0 ,
k ( L n + r n 2 2 q ) = ( 2 m + 1 ) π , J i n c ( k a n q R n ) < 0 ,
δ f = d f d λ δ l = f λ δ λ .
M = 360 ° / Δ θ * R / Δ R .
Ar +

Metrics