Abstract

Enhancements of the modulation depth in an electro-optic sensing application, through optimization of the modulation sidebands in both an electro-optic modulator and a microcavity electro-optic probe, have been investigated. The principles and methods of optimizing the operational bias points for the devices are described from the point of view of both an electro-optic modulator and probe, and their different optimum characteristics for signal-modulation depth, due to their huge scale gap, are presented. We use an optical-heterodyne receiver employing a fast modulator along with the electro-optic sensing technique to achieve high-frequency microwave electric field mapping. The practical limitations to sensitivity enhancement, solutions for compensating distortion, and combined optimization conditions for both electro-optic modulation and sensing are presented by exploring the evolution of field-mapping distributions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
    [CrossRef]
  2. K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  3. M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
    [CrossRef]
  4. K. Sasagawa, M. Tsuchiya, and M. Izutsu, “Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB5.
  5. K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement,” Electron. Lett. 42, 1357-1358 (2006).
    [CrossRef]
  6. D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
    [CrossRef]
  7. D. J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic field measurements using photonic down-mixing with harmonic sidebands,” Opt. Express 16, 14771-14779(2008).
    [CrossRef] [PubMed]
  8. A. Yariv and P. Yeh, Optical Waves in Crystals. (Wiley, 1984), Chap. 8,
  9. D. J. Lee and J. F. Whitaker, “A simplified Fabry-Perot electro-optic-modulation sensor,” IEEE Photon. Technol. Lett. 20, 866-868 (2008).
    [CrossRef]
  10. D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.
  11. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tshuchiya, “Performance evaluation of fiber-edge magnetooptic probe,” J. Lightwave Technol. 21, 3292-3299 (2003).
    [CrossRef]
  12. S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
    [CrossRef]

2008

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “A simplified Fabry-Perot electro-optic-modulation sensor,” IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic field measurements using photonic down-mixing with harmonic sidebands,” Opt. Express 16, 14771-14779(2008).
[CrossRef] [PubMed]

2006

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement,” Electron. Lett. 42, 1357-1358 (2006).
[CrossRef]

2003

2001

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

2000

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

1995

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Albrecht, P.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Chen, C. C.

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
[CrossRef]

Forman, M.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Hamacher, M.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Heidrich, H.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Hoshino, S.

Hubert, J.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Iwanami, M.

Izutsu, M.

K. Sasagawa, M. Tsuchiya, and M. Izutsu, “Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB5.

Jacumeit, G.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Kang, J. J.

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.

Katehi, L. P. B.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Kishi, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tshuchiya, “Performance evaluation of fiber-edge magnetooptic probe,” J. Lightwave Technol. 21, 3292-3299 (2003).
[CrossRef]

S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
[CrossRef]

Lee, D. J.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic field measurements using photonic down-mixing with harmonic sidebands,” Opt. Express 16, 14771-14779(2008).
[CrossRef] [PubMed]

D. J. Lee and J. F. Whitaker, “A simplified Fabry-Perot electro-optic-modulation sensor,” IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.

Marshall, T.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mirth, L.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mitani, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tshuchiya, “Performance evaluation of fiber-edge magnetooptic probe,” J. Lightwave Technol. 21, 3292-3299 (2003).
[CrossRef]

S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
[CrossRef]

Park, H.

Passenberg, W.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Popovic, Z.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Rohle, H.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Sasagawa, K.

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement,” Electron. Lett. 42, 1357-1358 (2006).
[CrossRef]

K. Sasagawa, M. Tsuchiya, and M. Izutsu, “Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB5.

Schroeter-Janssen, H.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Stenzel, R.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Trommer, D.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Tshuchiya, M.

Tsuchiya, M.

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement,” Electron. Lett. 42, 1357-1358 (2006).
[CrossRef]

S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
[CrossRef]

K. Sasagawa, M. Tsuchiya, and M. Izutsu, “Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB5.

Unterborsch, G.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

Wakana, S.

Whitaker, J. F.

D. J. Lee and J. F. Whitaker, “A simplified Fabry-Perot electro-optic-modulation sensor,” IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Bandwidth enhancement of electro-optic field measurements using photonic down-mixing with harmonic sidebands,” Opt. Express 16, 14771-14779(2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
[CrossRef]

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.

Yamazaki, E.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tshuchiya, “Performance evaluation of fiber-edge magnetooptic probe,” J. Lightwave Technol. 21, 3292-3299 (2003).
[CrossRef]

S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
[CrossRef]

Yang, K.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals. (Wiley, 1984), Chap. 8,

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals. (Wiley, 1984), Chap. 8,

Appl. Phys. Lett.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, “Electro-optic field mapping system utilizing external gallium arsenide probes,” Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

Electron. Lett.

K. Sasagawa and M. Tsuchiya, “Modulation depth enhancement for highly sensitive electro-optic RF near-field measurement,” Electron. Lett. 42, 1357-1358 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Hamacher, D. Trommer, H. Heidrich, P. Albrecht, G. Jacumeit, W. Passenberg, H. Rohle, H. Schroeter-Janssen, R. Stenzel, and G. Unterborsch, “First heterodyne receiver frontend module including a polarization diversity receiver OEIC on InP,” IEEE Photon. Technol. Lett. 7, 179-181 (1995).
[CrossRef]

D. J. Lee and J. F. Whitaker, “A simplified Fabry-Perot electro-optic-modulation sensor,” IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, “Active-amplifier-array diagnostics using high-resolution electrooptic field mapping,” IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Reflection-mode electro-optic sensing of microwave fields with a wavelength-tunable modulation depth,” Meas. Sci. Technol. 19, 115301-115308 (2008).
[CrossRef]

Opt. Express

Other

D. J. Lee, J. J. Kang, C. C. Chen, and J. F. Whitaker, “Vector near-field measurement system using an electro-optic microcavity and electrical downconversion,” in 2008 IEEE MTT-S International Microwave Symposium Digest (IEEE, 2008), pp. 1589-1592.

S. Mitani, E. Yamazaki, M. Kishi, and M. Tsuchiya, “EDFA-enhanced sensitivity of RF magneto-optical probe,” in MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics, 2003 (2003), pp. 255-258.
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals. (Wiley, 1984), Chap. 8,

K. Sasagawa, M. Tsuchiya, and M. Izutsu, “Sensitivity enhancement of electrooptic probing based on photonic downconversion by sideband management,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JWB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Modulated spectrum of the laser at 1562.2 nm from an EOM. (DC bias, V π ; RF driving power, 14 dBm with a 10.482 GHz LO frequency. The dashed curve is without the RF bias.

Fig. 2
Fig. 2

Measured transmission power curve for the premodulated light beam (dashed curve) and the resulting measured EO amplitude (solid curve) and phase (dotted–dashed curve) that correspond to the different EOM operating points. (Points a l are the selection of discrete DC bias and EOM operating points to be investigated). The actual transmitted power at point c is 9 mW ; the actual peak EO-signal level from the photodetector at the mixed-down IF is 52.5 dBm .

Fig. 3
Fig. 3

Modulation slope (red, center curves), transmission curve (black) and normalized signal per unit power (blue, highest peak) for an EOM providing premodulation in optical- heterodyne-downmixing EO sensing. The dashed curves are for practical cases with a δ from Fig. 2 of 3.57%.

Fig. 4
Fig. 4

Microstrip patch antenna with representative x-directed electric flux lines [yellow (lighter) and green (darker) arrows indicate fields that are out of phase].

Fig. 5
Fig. 5

Evolution of horizontal transverse electric field mapping at the various DC voltage biases on the EOM in Fig. 2 (normalized log scale: 0 dB = 52.5 dBm photodetected power in the signal at the IF).

Fig. 6
Fig. 6

Horizontal transverse electric field mapping using the difference of EO-sensor measured electric-field amplitudes at EOM bias values in Figs. 5 g and 5 i. (a) Normalized log scale, absolute value ( 0 dB = 62.6 dBm ); (b) normalized linear scale, absolute value [red (rightmost scale), max; blue, leftmost scale, min]; (c) normalized linear scale, with phase information, (red, max; green, reference; blue, min).

Fig. 7
Fig. 7

Normalized sensor reflectance slope versus corresponding EO-signal strength. (curve with dots, experimental slope; dashed curve, fitted slope of r = 0.78 ; curve with squares, experimental EO-signal strength; dotted–dashed curve, simulated EO-signal strength).

Fig. 8
Fig. 8

Evolution of horizontal transverse electric field mapping at the various spectral biases in Fig. 7 (normalized log scale: 0 dB = 52.5 dBm ).

Fig. 9
Fig. 9

Evolution of the strongest signal responses and noise floors at the various spectral biases in Fig. 7. (a) Signal–noise pairs in Fig. 8; (b) corresponding SNR plot.

Fig. 10
Fig. 10

Comparison of horizontal transverse electric field mapping (a) LO–RF combined optimization scan; (b) conventional scan.

Tables (1)

Tables Icon

Table 1 CSR and Modulation Depth (M) at the Various EOM DC Bias Values in Fig. 2

Metrics