Abstract

The problems associated with using a single fixed beam divergence for short-range inter-unmanned aerial vehicle free-space optical communications are discussed. To overcome the problems, a beam divergence changing mechanism is proposed. Four different methods are then proposed to implement the beam divergence changing mechanism. The performance of these methods is evaluated in terms of transmission distance under adverse weather conditions. The results show that the performance is greatly improved when the beam divergence changing mechanism is used.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Office of the Secretary of Defense, “Unmanned aircraft systems roadmap 2005-2030” (U.S. Department of Defense, 2005).
  2. Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
    [CrossRef]
  3. S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).
  4. S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw. 2, 178-200 (2003).
  5. A. S. Panahi and A. A. Kazemi, “Inter-satellite communications using laser based optical links,” Proc. SPIE 6758, 67580G (2007).
    [CrossRef]
  6. Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
    [CrossRef]
  7. E. Bernhard, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
    [CrossRef]
  8. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658-661 (1983)
    [CrossRef] [PubMed]
  9. Special Optics, Inc., “Laser beam expander theory,” http://www.specialoptics.com/pdf/wp_laser_beam_expander_theory.pdf (2008).
  10. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
    [CrossRef]
  11. Z. Jia, Q. Zhu, and F. Ao, “Atmospheric attenuation analysis in the FSO link,” in Eighth International Conference on Communication Technology (IEEE, 2006), pp. 1-4.
    [CrossRef]
  12. T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded market place,” Proc. SPIE 3232, 119 (1998).
    [CrossRef]
  13. E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
    [CrossRef]
  14. S. S. Muhammad, P. Kuhldorfer, and E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Seventh International Conference on Transparent Optical Networks (IEEE, 2005), pp. 407-410.
    [CrossRef]

2007 (1)

A. S. Panahi and A. A. Kazemi, “Inter-satellite communications using laser based optical links,” Proc. SPIE 6758, 67580G (2007).
[CrossRef]

2006 (2)

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

E. Bernhard, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[CrossRef]

2003 (1)

2001 (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
[CrossRef]

1998 (1)

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded market place,” Proc. SPIE 3232, 119 (1998).
[CrossRef]

1983 (1)

Ai, Y.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Ao, F.

Z. Jia, Q. Zhu, and F. Ao, “Atmospheric attenuation analysis in the FSO link,” in Eighth International Conference on Communication Technology (IEEE, 2006), pp. 1-4.
[CrossRef]

Bernhard, E.

E. Bernhard, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[CrossRef]

Bloom, S.

Carbonneau, T. H.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded market place,” Proc. SPIE 3232, 119 (1998).
[CrossRef]

Casey, W. L.

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

Chlestil, Ch.

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

Defense, Office of the Secretary of

Office of the Secretary of Defense, “Unmanned aircraft systems roadmap 2005-2030” (U.S. Department of Defense, 2005).

Geng, Q.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Jia, Z.

Z. Jia, Q. Zhu, and F. Ao, “Atmospheric attenuation analysis in the FSO link,” in Eighth International Conference on Communication Technology (IEEE, 2006), pp. 1-4.
[CrossRef]

Kazemi, A. A.

A. S. Panahi and A. A. Kazemi, “Inter-satellite communications using laser based optical links,” Proc. SPIE 6758, 67580G (2007).
[CrossRef]

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
[CrossRef]

Korevaar, E.

S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, “Understanding the performance of free-space optics,” J. Opt. Netw. 2, 178-200 (2003).

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
[CrossRef]

Kuhldorfer, P.

S. S. Muhammad, P. Kuhldorfer, and E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Seventh International Conference on Transparent Optical Networks (IEEE, 2005), pp. 407-410.
[CrossRef]

Lambert, S. G.

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

Leitgeb, E.

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

S. S. Muhammad, P. Kuhldorfer, and E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Seventh International Conference on Transparent Optical Networks (IEEE, 2005), pp. 407-410.
[CrossRef]

Li, K.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Lu, X.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
[CrossRef]

Muhammad, S. S.

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

S. S. Muhammad, P. Kuhldorfer, and E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Seventh International Conference on Transparent Optical Networks (IEEE, 2005), pp. 407-410.
[CrossRef]

Panahi, A. S.

A. S. Panahi and A. A. Kazemi, “Inter-satellite communications using laser based optical links,” Proc. SPIE 6758, 67580G (2007).
[CrossRef]

Rehm, W.

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

Schmitt, N.

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

Schmitt, N. P.

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

Schuster, J.

Self, S. A.

Willebrand, H.

Wisely, D. R.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded market place,” Proc. SPIE 3232, 119 (1998).
[CrossRef]

Yang, H.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Yang, J.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Zettl, K.

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

Zhou, Y.

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

Zhu, Q.

Z. Jia, Q. Zhu, and F. Ao, “Atmospheric attenuation analysis in the FSO link,” in Eighth International Conference on Communication Technology (IEEE, 2006), pp. 1-4.
[CrossRef]

Appl. Opt. (1)

J. Opt. Netw. (1)

Proc. SPIE (5)

A. S. Panahi and A. A. Kazemi, “Inter-satellite communications using laser based optical links,” Proc. SPIE 6758, 67580G (2007).
[CrossRef]

Y. Ai, Q. Geng, J. Yang, H. Yang, Y. Zhou, X. Lu, and K. Li, “5 Gps2.1 km WDM free-space optical communication experiments,” Proc. SPIE 6025, 602513 (2006).
[CrossRef]

E. Bernhard, “Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals,” Proc. SPIE 6304, 630418 (2006).
[CrossRef]

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4124, 26-37 (2001).
[CrossRef]

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless; the competitive advantage of free space telecommunications links in today's crowded market place,” Proc. SPIE 3232, 119 (1998).
[CrossRef]

Other (7)

E. Leitgeb, K. Zettl, S. S. Muhammad, N. Schmitt, and W. Rehm, “Investigation in free space optical communication links between unmanned aerial vehicles (UAVs),” in Ninth International Conference on Transparent Optical Networks (IEEE, 2007), pp. 152-155.
[CrossRef]

S. S. Muhammad, P. Kuhldorfer, and E. Leitgeb, “Channel modeling for terrestrial free space optical links,” in Seventh International Conference on Transparent Optical Networks (IEEE, 2005), pp. 407-410.
[CrossRef]

Z. Jia, Q. Zhu, and F. Ao, “Atmospheric attenuation analysis in the FSO link,” in Eighth International Conference on Communication Technology (IEEE, 2006), pp. 1-4.
[CrossRef]

Special Optics, Inc., “Laser beam expander theory,” http://www.specialoptics.com/pdf/wp_laser_beam_expander_theory.pdf (2008).

Office of the Secretary of Defense, “Unmanned aircraft systems roadmap 2005-2030” (U.S. Department of Defense, 2005).

Ch. Chlestil, E. Leitgeb, N. P. Schmitt, S. S. Muhammad, K. Zettl, and W. Rehm, “Reliable optical wireless links within UAV swarms,” in Eighth International Conference on Transparent Optical Networks (IEEE, 2006), pp. 39-42.
[CrossRef]

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Four methods for implementation of the beam divergence changing mechanism.

Fig. 2
Fig. 2

Angular size of uncertainty area of 27.5 m diameter and required transmit gain.

Fig. 3
Fig. 3

Configurations of systems A, B, and C.

Fig. 4
Fig. 4

Transmit gain profile of various beams with divergences of 96 mrad , 84 mrad , 72 mrad , 60 mrad , 48 mrad , 36 mrad , 24 mrad , 21 mrad , 18 mrad , 15 mrad , 12 mrad , 9 mrad , and 6 mrad .

Fig. 5
Fig. 5

Transmit gain at edge of uncertainty area.

Fig. 6
Fig. 6

Transmission distance under varying visibility: (a) under clear weather conditions, (b) under haze and light fog conditions.

Fig. 7
Fig. 7

Transmission distance under varying rainfall: (a) under normal rainfall conditions, (b) under strong and particularly strong rainfall conditions.

Tables (3)

Tables Icon

Table 1 Region of Beam Divergence Selections

Tables Icon

Table 2 Link Parameters

Tables Icon

Table 3 Weather Conditions for Evaluation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L GEO ( dB ) = 10 log ( A r x A w f ) ,
A r x A w f = π ( a r x 2 ) 2 π ( a w f 2 ) 2 = ( a r x a w f ) 2 = ( a r x θ div R ) 2 ,
θ div = 4 λ π W 0 ,
Att atm ( dB ) = 10 log [ exp ( 3.912 V ( λ 550     nm ) q R ) ] ,
q = 1.6 for high visibility   ( V > 50 km ) = 1.3 for average visibility   ( 6 km < V < 50 km ) = 0.16 V + 0.34 for haze   ( 1 km < V < 6 km ) = V 0.5 for mist   ( 0.5 km < V < 1 km ) = 0 for fog ( V < 0.5 km ) .
Att rain ( dB ) = 0.001076 r 2 / 3 R .
C n 2 ( h ) = 5.94 × 10 53 ( v 27 ) 2 h 10 exp ( h 1000 ) + 2.7 × 10 16 exp ( h 1500 ) + C n 2 ( 0 ) exp ( h 100 ) ,
L scin ( dB ) = 2 ( 23.17 × ( 2 π / λ ) 7 / 6 × C n 2 ( h ) × R 11 / 6 ) 1 / 2 .
L GEO + L pointing + Att atm + Att rain + L scin = P t x P r x sen L t x L r x M ( dB ) ,

Metrics