Abstract

A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
    [CrossRef]
  2. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
    [CrossRef]
  3. B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037-7048 (2008).
    [CrossRef] [PubMed]
  4. B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
    [CrossRef]
  5. B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
    [CrossRef]
  6. B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
    [CrossRef]
  7. B. Pan, H. Xie, J. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527-5533 (2008)
    [CrossRef] [PubMed]
  8. H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
    [CrossRef]
  9. G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998).
    [CrossRef]
  10. H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000).
    [CrossRef]
  11. P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
    [CrossRef]
  12. Y. Sun, J. H. L. Pang, C. K. Wong, and F. Su, “Finite element formulation for a digital image correlation method,” Appl. Opt. 44, 7357-7363 (2005).
    [CrossRef] [PubMed]
  13. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004).
    [CrossRef]
  14. S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369-3377 (2008).
    [CrossRef] [PubMed]
  15. Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420-5428 (2008).
    [CrossRef] [PubMed]
  16. B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).
  17. D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
    [CrossRef]

2008

2007

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

2006

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

2005

2004

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004).
[CrossRef]

2002

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
[CrossRef]

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

2000

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000).
[CrossRef]

1998

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998).
[CrossRef]

1989

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Asundi, A.

B. Pan, H. Xie, J. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527-5533 (2008)
[CrossRef] [PubMed]

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
[CrossRef]

Bruck, H. A.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Cary, P. D.

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000).
[CrossRef]

Chao, Y. J.

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
[CrossRef]

Chen, W.

S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369-3377 (2008).
[CrossRef] [PubMed]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004).
[CrossRef]

Cheng, P.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

Dai, F. L.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

Gao, J.

Gao, J. X.

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
[CrossRef]

Gao, W.

Garcia, D.

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
[CrossRef]

Guo, Z. Q.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

Helm, J. D.

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
[CrossRef]

Hua, T.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

Kemao, Q.

Knauss, W. G.

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998).
[CrossRef]

Li, S.

Lu, H.

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000).
[CrossRef]

McNeil, S. R.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

McNeill, S. R.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
[CrossRef]

Orteu, J. J.

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
[CrossRef]

Pan, B.

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

B. Pan, H. Xie, J. Gao, and A. Asundi, “Improved speckle projection profilometry for out-of-plane shape measurement,” Appl. Opt. 47, 5527-5533 (2008)
[CrossRef] [PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
[CrossRef]

B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
[CrossRef]

Pang, J. H. L.

Penazzi, L.

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Qian, K. M.

Schreier, H. W.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

Su, F.

Su, X.

S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369-3377 (2008).
[CrossRef] [PubMed]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004).
[CrossRef]

Sun, Y.

Sutton, M. A.

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
[CrossRef]

Vendroux, G.

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998).
[CrossRef]

Wang, H.

Wang, Q.

B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).

Wang, Z. Y.

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
[CrossRef]

Wong, C. K.

Xia, Y.

B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).

Xie, H.

Xie, H. M.

B. Pan, H. M. Xie, Z. Y. Wang, and K. M. Qian, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037-7048 (2008).
[CrossRef] [PubMed]

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
[CrossRef]

B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
[CrossRef]

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

Yang, L. H.

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
[CrossRef]

Acta Optica Sinica

B. Pan, H. M. Xie, Y. Xia, and Q. Wang, “Large deformation measurement based on reliable initial guess in digital image correlation method,” Acta Optica Sinica (in Chinese) (to be published).

Appl. Opt.

Exp. Mech.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261-267 (1989).
[CrossRef]

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements. Part 2. Improved digital image correlation,” Exp. Mech. 38, 86-92 (1998).
[CrossRef]

H. Lu and P. D. Cary, “Deformation measurement by digital image correlation: implementation of a second-order displacement gradient,” Exp. Mech. 40, 393-400 (2000).
[CrossRef]

P. Cheng, M. A. Sutton, H. W. Schreier, and S. R. McNeill, “Full-field speckle pattern image correlation with B-spline deformation function,” Exp. Mech. 42, 344-352 (2002).
[CrossRef]

J. Mater. Process. Technol.

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736-742 (2002).
[CrossRef]

Meas. Sci. Technol.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615-1621 (2006).
[CrossRef]

Opt. Eng.

B. Pan, H. M. Xie, Z. Q. Guo, and T. Hua, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Opt. Eng. 46, 033601 (2007).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

B. Pan, A. Asundi, H. M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. (to be published).
[CrossRef]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng. 42, 245-261 (2004).
[CrossRef]

Strain

B. Pan, H. M. Xie, L. H. Yang, and Z. Y. Wang, “Accurate measurement of satellite antenna surface using three-dimensional digital image correlation technique,” Strain (to be published).
[CrossRef]

Other

M. A. Sutton, S. R. McNeill, J. D. Helm, and Y. J. Chao, “Advances in two-dimensional and three-dimensional computer vision,” P. K. Rastogi, ed., Topics in Applied Physics (Springer Verlag, 2000), Vol. 77, pp. 323-372.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic principle of the DIC method.

Fig. 2
Fig. 2

Example of RGDIC based on the computed ZNCC coefficient value.

Fig. 3
Fig. 3

(a) Left image and (b) right image of the composite film surface. The yellow ellipse of the reference image is the defined ROI, and the inner red square shows the selected seed point and its subset.

Fig. 4
Fig. 4

Three intermediate stages and the finial results of the computed u displacement (top), v displacement (middle), and ZNCC coefficient (bottom) distributions using the RGDIC method.

Fig. 5
Fig. 5

Reconstructed 3D shape of the composite film surface subjected to 0.4 kPa inner pressure.

Fig. 6
Fig. 6

(a) Reference image and (b) target image. The yellow rectangle of the reference image is the defined ROI, and the inner red square illustrates the selected seed point and its subset.

Fig. 7
Fig. 7

Intermediate stages of the computed v displacement (left) and ZNCC coefficient (right) distributions using the RGDIC method. It is clear that serious decorrelation effect exist at the boundary if the hand.

Fig. 8
Fig. 8

Reconstructed profile of a human hand after threshold using ZNCC coefficient distribution: (a) contour plot and (b) 3D plot.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C ZNSSD ( p ) = x = M M y = M M [ f ( x , y ) f m x = M M y = M M [ f ( x , y ) f m ] 2 g ( x , y ) g m x = M M y = M M [ g ( x , y ) g m ] 2 ] 2 ,
f m = 1 ( 2 M + 1 ) 2 x = M M y = M M [ f ( x , y ) ] ,
g m = 1 ( 2 M + 1 ) 2 x = M M y = M M [ g ( x ' , y ' ) ] ,
C ZNCC ( p ) = x = M M y = M M [ f ( x , y ) f m ] × [ g ( x , y ) g m ] x = M M y = M M [ f ( x , y ) f m ] 2 x = M M y = M M [ g ( x , y ) g m ] 2 = 1 0.5 × C ZNSSD ( p ) .
x = x 0 + Δ x + u + u x Δ x + u y Δ y , y = y 0 + Δ y + v + v x Δ x + v y Δ y .
x = x 0 + Δ x + u + u x Δ x + u y Δ y + 1 2 u x x Δ x 2 + 1 2 u y y Δ y 2 + u x y Δ x Δ y , y = y 0 + Δ y + v + v x Δ x + v y Δ y + 1 2 v x x Δ x 2 + 1 2 v y y Δ y 2 + v x y Δ x Δ y .
p = p 0 C ( p 0 ) C ( p 0 ) ,

Metrics