Abstract

We propose a spectral imaging method for piecewise “macropixel” objects, which allows a regular digital camera to be converted into a digital snapshot spectral imager by equipping the camera with only a disperser and a demultiplexing algorithm. The method exploits a “multiplexed spectrum” intensity pattern, i.e., the superposition of spectra from adjacent different image points, formed on the image sensor of the digital camera. The spatial image resolution is restricted to a macropixel level in order to acquire both spectral and spatial data (i.e., an entire spectral cube) in a single snapshot. Results of laboratory experiments with a special macropixel object image, composed of small, spatially uniform squares, provide to our knowledge a first verification of the proposed spectral imaging method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
    [PubMed]
  2. M. Brown, Advanced Digital Photography (Media Publishing, 2004).
  3. R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
    [CrossRef]
  4. M. A. López-Álvarez, J. Hernández-Andrés, and J. Romero, “Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter,” Appl. Opt. 47, 4381-4390 (2008).
    [CrossRef] [PubMed]
  5. M. F. Carlsohn, “Spectral image processing in real-time,” J. Real Time Image Process. 1, 25-32 (2006).
    [CrossRef]
  6. M. Descour and E. L. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995).
    [CrossRef] [PubMed]
  7. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271-1273 (1997).
    [CrossRef] [PubMed]
  8. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt. 47, F85-F95 (2008).
    [CrossRef] [PubMed]
  9. W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45, 1898-1908 (2006).
    [CrossRef] [PubMed]
  10. J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46, 013201 (2007).
    [CrossRef]
  11. W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007).
    [CrossRef]
  12. J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14, 2951-2961 (1997).
    [CrossRef]
  13. M. E. Gehm, R. John, R. Willett, T. Schultz, and D. Brady, “Single-shot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013-14027 (2007).
    [CrossRef] [PubMed]
  14. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44-B51 (2008).
    [CrossRef] [PubMed]
  15. D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
    [CrossRef] [PubMed]
  16. H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
    [CrossRef] [PubMed]
  17. P. O. Brown, “The full yeast genome on a chip,” http://cmgm.stanford.edu/pbrown/yeastchip.html.
  18. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55-59 (1972).
    [CrossRef]
  19. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).
    [CrossRef]

2008 (3)

2007 (3)

M. E. Gehm, R. John, R. Willett, T. Schultz, and D. Brady, “Single-shot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46, 013201 (2007).
[CrossRef]

W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007).
[CrossRef]

2006 (3)

W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45, 1898-1908 (2006).
[CrossRef] [PubMed]

M. F. Carlsohn, “Spectral image processing in real-time,” J. Real Time Image Process. 1, 25-32 (2006).
[CrossRef]

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
[PubMed]

2005 (2)

R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
[CrossRef]

D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
[CrossRef] [PubMed]

2000 (1)

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

1974 (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).
[CrossRef]

1972 (1)

An, M.

Bearman, G.

Bertone, P.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Brady, D.

Brodzik, A. K.

Brown, M.

M. Brown, Advanced Digital Photography (Media Publishing, 2004).

Brown, P. O.

P. O. Brown, “The full yeast genome on a chip,” http://cmgm.stanford.edu/pbrown/yeastchip.html.

Carlsohn, M. F.

M. F. Carlsohn, “Spectral image processing in real-time,” J. Real Time Image Process. 1, 25-32 (2006).
[CrossRef]

Casamayor, A.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Chang, S.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Dereniak, E. L.

Descour, M.

Descour, M. R.

Filippini, D.

D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
[CrossRef] [PubMed]

Fink, W.

W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007).
[CrossRef]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
[PubMed]

Gehm, M. E.

Gerstein, M.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Greensill, C. V.

R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
[CrossRef]

Hagen, N.

Hartke, J.

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46, 013201 (2007).
[CrossRef]

Hernández-Andrés, J.

John, R.

Johnson, W. R.

W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007).
[CrossRef]

W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial spectral modulating snapshot hyperspectral imager,” Appl. Opt. 45, 1898-1908 (2006).
[CrossRef] [PubMed]

Klemic, J. F.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Klemic, K. G.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Long, R. L.

R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
[CrossRef]

López-Álvarez, M. A.

Lucy, L. B.

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).
[CrossRef]

Lundstrom, I.

D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
[CrossRef] [PubMed]

Maker, P. D.

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
[PubMed]

Mooney, J. M.

Reed, M. A.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Richardson, W. H.

Romero, J.

Schultz, T.

Schumacher, A. B.

Smith, D.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Snyder, M.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Tejle, K.

D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
[CrossRef] [PubMed]

Thome, K. J.

Vickers, V. E.

Volin, C. E.

Wagadarikar, A.

Walsh, K. B.

R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
[CrossRef]

Willett, R.

Wilson, D. W.

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
[PubMed]

Zhu, H.

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Appl. Opt. (5)

Astron. J. (1)

L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).
[CrossRef]

Biosens. Bioelectron. (1)

D. Filippini, K. Tejle, and I. Lundstrom, “ELISA test for anti-neutrophil cytoplasm antibodies detection evaluated by a computer screen photo-assisted technique,” Biosens. Bioelectron. 21, 266-272 (2005).
[CrossRef] [PubMed]

Cytometry A (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69, 735-747(2006).
[PubMed]

J. Biomed. Opt. (1)

W. R. Johnson, D. W. Wilson, and W. Fink, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 0140361 (2007).
[CrossRef]

J. Near Infrared Spectrosc. (1)

R. L. Long, K. B. Walsh, and C. V. Greensill, “Sugar “imaging” of fruit using a low cost charge-coupled device camera,” J. Near Infrared Spectrosc. 13, 177-186 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Real Time Image Process. (1)

M. F. Carlsohn, “Spectral image processing in real-time,” J. Real Time Image Process. 1, 25-32 (2006).
[CrossRef]

Nat. Genet. (1)

H. Zhu, J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder, “Analysis of yeast protein kinases using protein chips,” Nat. Genet. 26, 283-289 (2000).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. Hartke and E. L. Dereniak, “Snapshot dual-band visible hyperspectral imaging spectrometer,” Opt. Eng. 46, 013201 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

M. Brown, Advanced Digital Photography (Media Publishing, 2004).

P. O. Brown, “The full yeast genome on a chip,” http://cmgm.stanford.edu/pbrown/yeastchip.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relation between (a) the spectral cube data and (b) the image on the sensor.

Fig. 2
Fig. 2

Optical arrangement of the experiment for spectral imaging with a prism disperser.

Fig. 3
Fig. 3

Formation of a row-wise multiplexed spectrum image with macropixels in a simplified case of only three spectral bands ( S = 3 ) marked λ 1 , λ 2 , λ 3 . The disperser (not shown) shifts the light of each spectral band in every macropixel by one detector pixel relative to an adjacent spectral band and induces overlaps. Digital processing demultiplexes the spectral data. δ x is the image sensor pixel pitch, Δ x is the macropixel width.

Fig. 4
Fig. 4

Macropixel object with periodically repeated RGB squares. Additional calibration patterns composed of 18 vertically arranged rectangles of about macropixel size having different levels of intensity are seen on the left side.

Fig. 5
Fig. 5

Multiplexed sensor image of the RGB macropixel object: (a) monochrome B/W picture; (b) graph of a central row.

Fig. 6
Fig. 6

32-band demultiplexed spectra of the central row of the RGB macropixel object, obtained by the digital deconvolution procedure of the multiplexed sensor image [blue curves at (a) and (c)] and, for comparison, a reference spec trum received from the slitlike RGB object [pink curves at (b) and (c)].

Fig. 7
Fig. 7

“Toys” macropixel object containing 24 × 19 square-shaped macropixels separated by a 15% black gap.

Fig. 8
Fig. 8

Multiplexed spectrum image of the “Toys” macropixel object: (a) monochrome B/W picture; (b) graph of row 5.

Fig. 9
Fig. 9

32-band demultiplexed spectra of row 5 of the “Toys” macropixel object, obtained by the digital deconvolution procedure [blue curves in (a) and (b)] and, for comparison, a reference spectra of the reference slitlike “Toys” object [pink curves in (a) and (c)] . The color bar of respective macropixels is given only for illustration.

Fig. 10
Fig. 10

32-band demultiplexed spectra of several rows of the “Toys” macropixel object, obtained by the digital deconvolution procedure (blue curve) and, for comparison, directly measured reference spectra of the slitlike “Toys” object (pink curve). Colors of respective macropixels are provided only for illustration. The graph shows both spectrum shape and intensity. The deviation of results is explained by nonlinearity, noise, and imperfectness of the lab level experimental setup.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ x = S x δ x , Δ y = S y δ y , S x S y S ,
I ( x , λ ( j ) ) = k = 1 K y n = 1 K x V k , n ( j ) g ( x α k , n ) , V k , n ( j ) = I ( α k , n , λ ( j ) ) .
J ( x ) = λ mun λ max χ ( λ ) I [ x ζ ( λ ) d , λ ] d λ j = 1 S χ ( j ) I [ x ζ ( λ ( j ) ) d , λ ( j ) ] ,
J ( x ) = k = 1 K y n = 1 K x j = 1 S χ ( j ) V k , n ( j ) g [ x α k , n ζ ( λ ( j ) ) d ] .
J ( x ) = n = 1 K x j = 1 S χ ( j ) V k , n ( j ) g { x [ j 1 + S x ( n 1 ) + j ] δ x } ,
α n = [ S x ( n 1 ) + 1 ] δ x , ζ ( λ ( j ) ) = [ j 1 + ( j 1 ) ] δ x ,
Γ S x ( n 1 ) + j = χ ( j ) V k , n ( j ) , n = 1 , K x ¯ , j = 1 , S ¯ , k = 1 , K y ¯ ,
J m = m ˜ = 1 K x S x g m m ˜ Γ m ˜ , m = 1 , N x ¯ , k = 1 , K y ¯ ,
V k , n ( j ) = Γ ^ S x ( n 1 ) + j χ ( j ) , k = 1 , K y ¯ , n = 1 , K x ¯ , j = 1 , S ¯ .

Metrics