Abstract

We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip–sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5nm.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Step-height measurement by means of a dual-frequency interferometric confocal microscope

Dejiao Lin, Zhongyao Liu, Rui Zhang, Juqun Yan, Chunyong Yin, and Yi Xu
Appl. Opt. 43(7) 1472-1479 (2004)

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

Lewis Gomez, Renaud Bachelot, Alexandre Bouhelier, Gary P. Wiederrecht, Shih-hui Chang, Stephen K. Gray, Feng Hua, Seokwoo Jeon, John A. Rogers, Miguel E. Castro, Sylvain Blaize, Ilan Stefanon, Gilles Lerondel, and Pascal Royer
J. Opt. Soc. Am. B 23(5) 823-833 (2006)

Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry

Hung-Lin Hsieh and Ssu-Wen Pan
Appl. Opt. 52(27) 6840-6848 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription