Abstract

We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip–sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.
  2. D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
    [CrossRef]
  3. G. E. Sommargren, “Optical heterodyne profiliglometry,” Appl. Opt. 20, 610-618 (1981).
    [CrossRef] [PubMed]
  4. D. Pantzer, J. Politch, and L. Ek, “Heterodyne profiligling instrument for the Angstrom region,” Appl. Opt. 25, 4168-4172(1986).
    [CrossRef] [PubMed]
  5. D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
    [CrossRef] [PubMed]
  6. C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006).
    [CrossRef]
  7. H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
    [CrossRef] [PubMed]
  8. A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
    [CrossRef]
  9. N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
    [CrossRef]
  10. G. Schurmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040-5045 (2001).
    [CrossRef]
  11. M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .
  12. A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004).
    [CrossRef]
  13. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. H. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B 23, 823-833 (2006).
    [CrossRef]
  14. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope,” Opt. Express 13, 5553-5564 (2005).
    [CrossRef] [PubMed]
  15. S. Blaize, G. Lerondel, A. Bruyant, R. Bachelot, and P. Royer, “Optical field probing in photonic structures by atomic force microscopy combined with optical heterodyne detection,” Proc. SPIE 6896, 689616 (2008).
    [CrossRef]
  16. C. Chou, J. Shyu, Y. Huang, and C. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Appl. Opt. 37, 4137-4142 (1998).
    [CrossRef]
  17. J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
    [CrossRef]
  18. Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
    [CrossRef]
  19. D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
    [CrossRef]
  20. M. Yokota, A. Asaka, and T. Yoshino, “Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement,” Appl. Opt. 42, 1805-1808 (2003).
    [CrossRef] [PubMed]
  21. E. Wolf, “Significance and measurability of the phase of a spatially coherent optical field,” Opt. Lett. 28, 5-6 (2003).
    [CrossRef] [PubMed]
  22. Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).
  23. W. Hou, “Optical parts and the nonlinearity in heterodyne interferometers,” Precision Eng. 30, 337-346 (2006).
    [CrossRef]
  24. M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
    [CrossRef]
  25. P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
    [CrossRef]
  26. I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
    [CrossRef]

2008 (1)

S. Blaize, G. Lerondel, A. Bruyant, R. Bachelot, and P. Royer, “Optical field probing in photonic structures by atomic force microscopy combined with optical heterodyne detection,” Proc. SPIE 6896, 689616 (2008).
[CrossRef]

2007 (1)

A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
[CrossRef]

2006 (3)

2005 (5)

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope,” Opt. Express 13, 5553-5564 (2005).
[CrossRef] [PubMed]

J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
[CrossRef]

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
[CrossRef]

2004 (2)

D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
[CrossRef] [PubMed]

A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004).
[CrossRef]

2003 (3)

2002 (1)

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

2001 (3)

G. Schurmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, “Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy,” Appl. Opt. 40, 5040-5045 (2001).
[CrossRef]

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

1998 (2)

D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
[CrossRef]

C. Chou, J. Shyu, Y. Huang, and C. Yuan, “Common-path optical heterodyne profilometer: a configuration,” Appl. Opt. 37, 4137-4142 (1998).
[CrossRef]

1997 (1)

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

1986 (1)

1981 (1)

Arima, K.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Asaka, A.

Aubert, S.

Bachelot, R.

Blaize, S.

Bouhelier, A.

Bruyant, A.

S. Blaize, G. Lerondel, A. Bruyant, R. Bachelot, and P. Royer, “Optical field probing in photonic structures by atomic force microscopy combined with optical heterodyne detection,” Proc. SPIE 6896, 689616 (2008).
[CrossRef]

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type scanning near-field optical microscope,” Opt. Express 13, 5553-5564 (2005).
[CrossRef] [PubMed]

Castro, M. E.

Chang, S. H.

Chao, Z.

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

Chen, Q.

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

Choi, H.

J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
[CrossRef]

Chou, C.

Cretin, B.

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

de Rooij, N. F.

Eckert, R.

Egawa, A.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Ek, L.

Freyland, J. M.

Ge, Y.

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Gomez, L.

Gonda, S.

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
[CrossRef]

Gray, S. K.

Grose, R.

D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
[CrossRef]

Hazotte, A.

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

Heinzelmann, H.

Hirokane, T.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Homma, K.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Hosoi, H.

N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
[CrossRef]

Hou, W.

W. Hou, “Optical parts and the nonlinearity in heterodyne interferometers,” Precision Eng. 30, 337-346 (2006).
[CrossRef]

Hua, F.

Huang, Y.

Inoue, H.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Jeon, S.

Jiang, H.

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

Jiang, X.

C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006).
[CrossRef]

Kataoka, T.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Kawashima, T.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Kesler, D.

D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
[CrossRef]

Kim, J. M.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Koenders, L.

A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
[CrossRef]

Kurosawa, T.

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
[CrossRef]

La, J.

J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
[CrossRef]

Lei, H. N.

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

Lerondel, G.

Li, Q.

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Li, Y.

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Liao, X.

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Lie, D.

D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
[CrossRef]

Lin, D.

C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006).
[CrossRef]

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
[CrossRef] [PubMed]

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

Liu, Z.

Manalis, S. R.

A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004).
[CrossRef]

Misumi, I.

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
[CrossRef]

Morita, M.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Muramatsu, H.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Noell, W.

Pantzer, D.

Park, K.

J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
[CrossRef]

Pastre, D.

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

Patois, R.

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

Politch, J.

Rogers, J. A.

Rousier, R.

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

Royer, P.

Schurmann, G.

Shigetoshi, T.

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Shimizu, N.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Shimodaira, M.

M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .

Shirakawabe, Y.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Shyu, J.

Sommargren, G. E.

Sparks, A. W.

A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004).
[CrossRef]

Staufer, U.

Stefanon, I.

Sueoka, K.

N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
[CrossRef]

Takahashi, H.

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

Takamasu, K.

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
[CrossRef]

Torii, A.

M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .

Troyon, M.

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

Ueda, A.

M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .

Uehara, N.

N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
[CrossRef]

Vairac, P.

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

Wang, D.

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Wang, Z.

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

Wiederrecht, G. P.

Wolf, E.

Wolff, H.

A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
[CrossRef]

Wu, J.

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

Xu, Y.

Yacoot, A.

A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
[CrossRef]

Yan, J.

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
[CrossRef] [PubMed]

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

Yin, C.

C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006).
[CrossRef]

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step height measurement by means of dual-frequency interferometric confocal microscope,” Appl. Opt. 43, 1472-1479 (2004).
[CrossRef] [PubMed]

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

Yokota, M.

Yoshino, T.

Yuan, C.

Zhang, R.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

A. W. Sparks and S. R. Manalis, “Scanning probe microscopy with inherent disturbance suppression,” Appl. Phys. Lett. 85, 3929-3931 (2004).
[CrossRef]

Int. J. Electron. (1)

D. Lin, J. Yan, Z. Chao, H. Jiang, and C. Yin, “Phasemeter with external trigger applied to PZT modulated interferometer,” Int. J. Electron. 89, 759-769 (2002).
[CrossRef]

J. Microsc. (1)

H. Muramatsu, A. Egawa, K. Homma, J. M. Kim, H. Takahashi, Y. Shirakawabe, and N. Shimizu, “Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever,” J. Microsc. 202, 154-161 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (4)

A. Yacoot, L. Koenders, and H. Wolff, “An atomic force microscope for the study of the effects of tip-sample interactions on dimensional metrology,” Meas. Sci. Technol. 18, 350-359 (2007).
[CrossRef]

C. Yin, D. Lin, Z. Liu, and X. Jiang, “New advance in confocal microscopy,” Meas. Sci. Technol. 17, 596-600 (2006).
[CrossRef]

Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, “Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser,” Meas. Sci. Technol. 16, 2030-2037(2005).
[CrossRef]

I. Misumi, S. Gonda, T. Kurosawa, and K. Takamasu, “Uncertainty in pitch measurements of one-dimensional grating standards using a nanometrological atomic force microscope,” Meas. Sci. Technol. 14, 463-471 (2003).
[CrossRef]

Nanotechnology (2)

M. Troyon, Z. Wang, D. Pastre, H. N. Lei, and A. Hazotte, “Force modulation microscopy for the study of stiff materials,” Nanotechnology 8, 163-171 (1997).
[CrossRef]

N. Uehara, H. Hosoi, and K. Sueoka, “Tip-induced relaxation and amplitude of cantilever vibration observed on GaAs(110) surface,” Nanotechnology 16, S102-106 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Precision Eng. (1)

Y. Li, Q. Li, D. Wang, Y. Ge, and X. Liao, “Design and study on a novel micro-detecting device for superfinish surface scratch,” Opt. Precision Eng. 13 Suppl., 65-68 (2005) (in Chinese).

Precision Eng. (1)

W. Hou, “Optical parts and the nonlinearity in heterodyne interferometers,” Precision Eng. 30, 337-346 (2006).
[CrossRef]

Proc. SPIE (3)

P. Vairac, R. Rousier, R. Patois, and B. Cretin, “Quantitative optical measurement of microcantilever vibration: Applications to near-field microsensors,” Proc. SPIE 4400, 90-101(2001).
[CrossRef]

S. Blaize, G. Lerondel, A. Bruyant, R. Bachelot, and P. Royer, “Optical field probing in photonic structures by atomic force microscopy combined with optical heterodyne detection,” Proc. SPIE 6896, 689616 (2008).
[CrossRef]

D. Lie, D. Kesler, and R. Grose, “The use of new technology for enhanced detection of crystalline defects on silicon wafers,” Proc. SPIE 3275, 138-144 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

J. La, H. Choi, and K. Park, “Heterodyne laser Doppler vibrometer using a Zeeman-stabilized He-Ne laser with a one-shot frequency to voltage converter,” Rev. Sci. Instrum. 76, 025112 (2005).
[CrossRef]

Other (2)

M. Shimodaira, A. Torii, and A. Ueda, “Application of atomic force microscopy to an encoder,” in Proceedings of the International Symposium on Micro Machine and Human Science (IEEE, 1999), pp. 59-64 .

K. Arima, T. Shigetoshi, H. Inoue, T. Kawashima, T. Hirokane, T. Kataoka, and M. Morita, “Nano-scale characterization of surface defects on CMP-finished Si wafers by scanning probe microscopy combined with laser light scattering,” in Proceedings of the Materials Research Society Symposium (MRS, 2007), Vol. 991, pp. 227-232.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the heterodyne system: 1, transverse Zeeman laser; 2, beam splitter; 3, 16. polarization analyzers; 4, 18, photodiodes D 1 , D 2 ; 5, 7, 17, lenses; 6, pinhole; 8, polarizing beam splitter; 9, 11, quarter-wave plates; 10, mirror; 12, objective lens; 13, cantilever tip; 14, PZT; 15, diaphragm.

Fig. 2
Fig. 2

Configuration of the HICT measurement system: Cantilever tip acts as a scanning probe and heterodyne interferometry with phase measurement gets the sample topography by scanning. Here f 1 , f 2 are two frequencies of the dual-frequency laser and A sin ( ω t ) is the driving signal of oscillating tip.

Fig. 3
Fig. 3

(a) Long-term stability of the system and (b) short-term stability of the system; the measurement values of displacement result from the phase drift in the heterodyne interferometry.

Fig. 4
Fig. 4

(a) Measurement result of a normal scanning curve in which the normal displacement of the tip is changed with the variation of tip–sample distance. (b) Test for discrimination and repeatability in different tip–sample distances of the working (imaging) region.

Fig. 5
Fig. 5

(a)  X Y -scanning image of the standard sample is performed by the HICT. (b) The profiles are observed at the positions of y = 7.0 , 9.0, and 11.0 V , in which the sample is scanned with a step of 0.1 V in the X direction and positioned with step of 1.0 V in the Y direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z = λ 720 Δ φ ,
k i = 3 2 R 1 / 3 K 2 / 3 Δ F 1 / 3 = 3 2 K a H ,
1 K = 3 4 [ 1 ν t 2 E t + 1 ν s 2 E s ] ,

Metrics