Abstract

We describe a novel approach developed for the National Polar-Orbiting Operational Environmental Satellite System/Visible Infrared Imaging Radiometer Suite (VIIRS) to retrieve pixel-level mixed-phase cloud optical thicknesses and effective particle sizes using 0.67, 1.6, 2.25, and 3.7μm bands reflectance/radiance. This approach utilizes lookup tables of reflectances constructed from radiative transfer simulations and a numerical iterative search method. The capability of this new approach was demonstrated using Moderate Resolution Imaging Spectroradiometer (MODIS) data as proxy to VIIRS. Two proxy scenes, 14 October 2001 over North Platte, Nebraska, during the ninth Cloud Layer Experiment (CLEX-9) and 9 November 2006 over the Great Lakes and Eastern Canada during the Canadian CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Validation Project (C3VP), were analyzed. The performance of the mixed-phase retrieval algorithm was assessed by comparison with the MODIS retrieval products, airborne in situ observations during CLEX-9 and CloudSat data during C3VP.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995).
    [CrossRef]
  2. K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
    [CrossRef]
  3. B. Henson, “Smoother skies,” UCAR Quarterly Winter 2007-2008, 8-11 (2008).
  4. C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339-345 (1977).
    [CrossRef]
  5. K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979).
    [CrossRef]
  6. H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
    [CrossRef]
  7. G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004).
    [CrossRef]
  8. Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004).
    [CrossRef]
  9. A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
    [CrossRef]
  10. M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
    [CrossRef]
  11. P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
    [CrossRef]
  12. C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.
  13. Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.
  14. E. Wong, K. Hutchison, S. C. Ou, and K. N. Liou, “Cirrus cloud top temperatures retrieved from radiances in the National Polar-Orbiting Operational Environmental Satellite Syste--Visible Infrared Imager Radiometer Suite 8.55 and 12.0 μm band passes,” Appl. Opt. 46, 1316-1325 (2007).
    [CrossRef] [PubMed]
  15. A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
    [CrossRef]
  16. J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.
  17. X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
    [PubMed]
  18. S.-C. Ou, Y. Takano, K. Liou, G. J. Higgins, A. George, and R. Slonaker, “Remote sensing of cirrus cloud optical thickness and effective particle size for the national polar-orbiting operational environmental satellite system visible infrared imager radiometer suite: sensitivity to instrument noise and uncertainties in environmental parameters,” Appl. Opt. 42, 7202-7214 (2003).
    [CrossRef]
  19. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
    [CrossRef]
  20. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds, Part I,” J. Atmos. Sci. 46, 3-19 (1989).
    [CrossRef]
  21. Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993).
    [CrossRef]
  22. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), pp. 583.
  23. T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995).
    [CrossRef]
  24. S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
    [CrossRef]
  25. M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997).
    [CrossRef]
  26. J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
    [CrossRef]

2008 (2)

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

B. Henson, “Smoother skies,” UCAR Quarterly Winter 2007-2008, 8-11 (2008).

2007 (1)

2005 (1)

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

2004 (3)

G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004).
[CrossRef]

Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004).
[CrossRef]

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

2003 (4)

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

S.-C. Ou, Y. Takano, K. Liou, G. J. Higgins, A. George, and R. Slonaker, “Remote sensing of cirrus cloud optical thickness and effective particle size for the national polar-orbiting operational environmental satellite system visible infrared imager radiometer suite: sensitivity to instrument noise and uncertainties in environmental parameters,” Appl. Opt. 42, 7202-7214 (2003).
[CrossRef]

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

2002 (1)

J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
[CrossRef]

2000 (1)

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

1997 (1)

M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997).
[CrossRef]

1995 (2)

Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995).
[CrossRef]

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995).
[CrossRef]

1993 (1)

Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993).
[CrossRef]

1989 (1)

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds, Part I,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

1979 (1)

K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979).
[CrossRef]

1977 (1)

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

1974 (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Ackerman, S.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Ackerman, T. P.

J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
[CrossRef]

Baker, B.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Baum, B.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Carey, L. D.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Cober, S. G.

G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004).
[CrossRef]

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Coberi, S.

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Comstock, J.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Comstock, J. M.

J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
[CrossRef]

Cotton, W. R.

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Curry, J. A.

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Demoz, B. B.

Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.

Deng, M.

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

Flynn, C.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Frey, R.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Fu, Q.

Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004).
[CrossRef]

Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993).
[CrossRef]

George, A.

Glazer, A.

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Gu, Y.

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

Hallett, J.

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Han, Y.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Henson, B.

B. Henson, “Smoother skies,” UCAR Quarterly Winter 2007-2008, 8-11 (2008).

Higgins, G. J.

Hollars, S.

Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004).
[CrossRef]

Hutchison, K.

Intrieri, J.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Isaac, G.

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Isaac, G. A.

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Jiang, H.

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Kankiewicz, A.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Key, J.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

King, M.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

King, M. D.

M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997).
[CrossRef]

Kollias, P.

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

Korolev, A.

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Lawson, P.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Liou, K.

Liou, K. N.

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

E. Wong, K. Hutchison, S. C. Ou, and K. N. Liou, “Cirrus cloud top temperatures retrieved from radiances in the National Polar-Orbiting Operational Environmental Satellite Syste--Visible Infrared Imager Radiometer Suite 8.55 and 12.0 μm band passes,” Appl. Opt. 46, 1316-1325 (2007).
[CrossRef] [PubMed]

Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993).
[CrossRef]

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds, Part I,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979).
[CrossRef]

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), pp. 583.

Mace, G. G.

J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
[CrossRef]

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

MacFarquhar, G.

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

Mather, J.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Matrosov, S.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Matrosov, S. Y.

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

McFarlane, S. A.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

McFarquhar, G.

G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004).
[CrossRef]

Mendoza, A.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Menzel, W.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Nakajima, T.

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995).
[CrossRef]

Nakajima, T. Y.

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995).
[CrossRef]

Niu, J.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Ou, S. C.

Ou, S. S. C.

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

Ou, S.-C.

Pinto, J. O.

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Platnick, S.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

Riedi, J.

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

Sassen, K.

K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979).
[CrossRef]

Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.

Schneider, T. L.

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

Shine, K. P.

Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995).
[CrossRef]

Shupe, M.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Shupe, M. D.

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

Slonaker, R.

Stone, R.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Strapp, J. W.

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Sun, Z.

Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995).
[CrossRef]

Takano, Y.

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Tremblay, A.

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Turner, D. D.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Uttal, T.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Vaillancourt, P. A.

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Vonder Haar, T. H.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Wang, M.

M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997).
[CrossRef]

Wang, X.

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

Wang, Z.

Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.

Weissbluth, M. J.

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Whiteman, D. N.

Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.

Wong, E.

Yang, P.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Yue, Q.

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

Zuidema, P.

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Appl. Opt. (2)

Geophys. Res. Lett. (1)

K. N. Liou, Q. Yue, Y. Gu, and G. MacFarquhar, “On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models,” Geophys. Res. Lett. 35, L13805 (2008).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. Platnick, M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey, “The MODIS cloud products--algorithms and examples from Terra,” IEEE Trans. Geosci. Remote Sens. 41, 459-473 (2003).
[CrossRef]

J. Appl. Meteorol. (1)

C. M. R. Platt, “Lidar observation of a mixed-phase altostratus cloud,” J. Appl. Meteorol. 16, 339-345 (1977).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

M. D. Shupe, P. Kollias, S. Y. Matrosov, and T. L. Schneider, “Deriving mixed-phase cloud properties from Doppler radar spectra,” J. Atmos. Ocean. Technol. 21, 660-670 (2004).
[CrossRef]

J. Atmos. Sci. (7)

P. Zuidema, B. Baker, Y. Han, J. Intrieri, J. Key, P. Lawson, S. Matrosov, M. Shupe, R. Stone, and T. Uttal, “An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA,” J. Atmos. Sci. 62, 160-176 (2005).
[CrossRef]

Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds, Part I,” J. Atmos. Sci. 46, 3-19 (1989).
[CrossRef]

Q. Fu and K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008-2025(1993).
[CrossRef]

K. Sassen and K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838-851(1979).
[CrossRef]

H. Jiang, W. R. Cotton, J. O. Pinto, J. A. Curry, and M. J. Weissbluth, “Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: sensitivity to concentration of ice crystals and large-scale heat and moisture advection,” J. Atmos. Sci. 57, 2105-2117 (2000).
[CrossRef]

Q. Fu and S. Hollars, “Testing mixed-phase cloud water vapor parameterizations with SHEBA/FIRE-ACE observations,” J. Atmos. Sci. 61, 2083-2091 (2004).
[CrossRef]

T. Y. Nakajima and T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for fire and Astex regions,” J. Atmos. Sci. 52, 4043-4059(1995).
[CrossRef]

J. Clim. (2)

G. McFarquhar and S. G. Cober, “Single-scattering properties of mixed-phase Arctic clouds at solar wavelengths: impacts on radiative transfer,” J. Clim. 17, 3799-3813 (2004).
[CrossRef]

Z. Sun and K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds,” J. Clim. 8, 1874-1888 (1995).
[CrossRef]

J. Geophys. Res. (3)

X. Wang, K. N. Liou, S. S. C. Ou, G. G. Mace, and M. Deng, “Remote sensing of cirrus cloud vertical size profile using MODIS data,” J. Geophys. Res. (to be published).
[PubMed]

M. Wang and M. D. King, “Correction of Rayleigh scattering effects in cloud optical thickness retrievals,” J. Geophys. Res. 102, 915-926 (1997).
[CrossRef]

J. M. Comstock, T. P. Ackerman, and G. G. Mace, “Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: cloud statistics and radiative impacts,” J. Geophys. Res. 107, 4714 (2002).
[CrossRef]

Mon. Weather Rev. (1)

A. Tremblay, P. A. Vaillancourt, S. G. Cober, A. Glazer, and G. A. Isaac, “Improvements of a mixed-phase cloud scheme using aircraft observations,” Mon. Weather Rev. 131, 672-686(2003).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

A. Korolev, G. Isaac, S. Coberi, J. W. Strapp, and J. Hallett, “Microphysical characterization of mixed-phase clouds,” Q. J. R. Meteorol. Soc. 129, 39-65 (2003).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

UCAR Quarterly (1)

B. Henson, “Smoother skies,” UCAR Quarterly Winter 2007-2008, 8-11 (2008).

Other (4)

K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), pp. 583.

C. Flynn, A. Mendoza, D. D. Turner, J. Comstock, S. A. McFarlane, and J. Mather, “Observation of clouds and aerosol with elastic depolarization lidar during the Mixed-Phase Arctic Cloud Experiment (M-PACE),” presented at the 2nd AMS Symposium on Lidar Atmospheric Applications, San Diego, CA, 8-14 January 2005.

Z. Wang, K. Sassen, B. B. Demoz, and D. N. Whiteman, “Arctic mixed-phase cloud microphysical properties retrieved from Ground-based active and passive remote sensors,” presented at the 8th AMS Conference on Polar Meteorology and Oceanography, San Diego, CA, 8-14 January 2005.

J. Niu, L. D. Carey, P. Yang, A. Kankiewicz, and T. H. Vonder Haar, “A common microphysical structure for midlevel mixed-phase cloud in the mid-latitudes: results from the Cloud Layer Experiment (CLEX-9),” presented at the 12th AMS Conference on Cloud Physics, Madison, WI, 9-14 July 2006, pp. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Flowchart of the mixed-phase cloud retrieval approach.

Fig. 2
Fig. 2

Single-scattering coalbedos plotted as functions of D e for (a) 0.67, (b) 1.6, (c) 2.25, and (d)  3.7 μm bands. The curves denote coalbedo values of constant r e .

Fig. 3
Fig. 3

Phase functions plotted as functions of scattering angle for (a) 0.67, (b) 1.6, (c) 2.25, and (d)  3.7 μm bands. In each frame, phase functions for pure ice cloud ( D e = 42 μm ), pure water cloud ( r e = 8 μm ), and a mixed-phase cloud ( D e = 42 μm and r e = 8 μm ) are plotted.

Fig. 4
Fig. 4

Images of mixed-phase retrieved (a)  τ i , (b)  D e , (c)  τ w , and (d)  r e for the Terra/MODIS scene of 14 October 2001 over North Platte, Nebraska. Also shown are (e) retrieved τ i and τ w versus MODIS τ within the pink box and (f) retrieved D e and r e versus MODIS r e within the pink box.

Fig. 5
Fig. 5

Comparison of retrieved and in situ r e for collocated pixels.

Fig. 6
Fig. 6

Images of mixed-phase retrieved for the Terra/MODIS scene of 9 November 2006 over the Great Lakes region and Eastern Canada: (a) MODIS composite image, where the blue arrow denotes the CloudSat/CALIPSO track and the red box denotes the selected domain for validation of the retrieval algorithm; (b)  τ c ; (c)  D e ; and (d)  r e within the red box. Also shown are (e) retrieved τ i and τ w versus MODIS τ c and (f) retrieved D e and r e versus MODIS r e within the red box.

Fig. 7
Fig. 7

(a) Time series of vertically resolved D e derived from CPR observations. (b) Same as in (a) except for IWC. (c) Collocated time series of retrieved and CPR D e ( t ) . (d) Same as in (c) except for IWP.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ω ˜ = τ s τ = ω ˜ i τ i + ω ˜ w τ w τ i + τ w = ω ˜ i β i + ω ˜ w β w β i + β w ,
ω ˜ l = ω ˜ i τ i ω ˜ i l + ω ˜ w τ w ω ˜ w l ω ˜ i τ i + ω ˜ w τ w ,
f = τ s i f i + τ s w f w τ s ,
γ ( * ) ( μ ) = 1 π 0 2 π 0 1 T ( * ) ( μ , μ , φ φ ) μ d μ d φ + e τ / μ ,
r ( * ) ( μ ) = 1 π 0 2 π 0 1 R ( * ) ( μ , μ , φ φ ) μ d μ d φ ,
r ¯ * = 2 0 1 r * ( μ ) d μ ,
R ( μ , μ 0 , Δ φ ) = R c ( μ , μ 0 , Δ φ ) + A g 1 r ¯ * A g γ * ( μ ) γ ( μ 0 ) .
R w = R T u ( μ ) T u ( μ 0 ) ,
T u ( μ ) = e τ u ( P c ) / μ ,
R 0.645 ( μ , μ 0 , Δ φ ) τ r P r ( μ , μ 0 , Δ φ ) 4 μ μ 0 + R w ( μ , μ 0 , Δ φ ) e τ r ( 1 / μ + 1 / μ 0 ) + τ r 2 μ 0 r ( μ ) e τ r / μ + τ r 2 μ r ( μ 0 ) e τ r / μ 0 ,
I 3.75 ( μ , μ 0 , Δ φ ) = R w ( μ , μ 0 , Δ φ ) μ 0 F 0 π + T u ( μ ) [ γ * ( μ ) 1 A g 1 r ¯ * A g B ( T g ) + [ 1 γ ( μ ) r ( μ ) ] B ( T c ) ] ,
IWP τ c / ( a + b / D e ) ,

Metrics