Abstract

In this paper a new ultrasonic testing system is described that utilizes noncontact optical methods to generate and detect surface acoustic waves (SAWs) and has significant applications in the nondestructive evaluation of surface material. A narrowband SAW is generated with a new and straightforward grating mask image projection method that provides fast switching and a controllable frequency band, and hence control of the penetration depth of the ultrasonic wave. A narrowband SAW with center frequency above 30MHz, and hence better depth resolution, is generated. The detection of the SAW is performed with a simplified design of an optical fiber interferometer that has good sensitivity and manoeuvrability without requiring additional auxiliary components. The novel combination of these two optical techniques permits the measurement of small samples that are otherwise difficult to measure, especially nondestructively. A model was constructed to simulate the temporal characteristics of the generated narrowband SAW and showed good agreement with experiment. Measurements on an aluminum sample and an extracted human incisor demonstrate the system’s performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, 1999).
  2. J. D. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 1984).
  3. T. Kundu, ed. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, 2004).
  4. D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
    [CrossRef]
  5. C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
    [CrossRef]
  6. J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
    [CrossRef]
  7. D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
    [CrossRef]
  8. D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
    [CrossRef]
  9. I. Arias and J. D. Achenbach, “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique,” Wave Motion 39, 61-75 (2004).
    [CrossRef]
  10. Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172-181 (2004).
    [CrossRef] [PubMed]
  11. C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).
  12. A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227-238 (1992).
    [CrossRef]
  13. K. L. Telschow, “Material property measurement in hostile environments using laser acoustics,” Proc.-IEEE Ultrason. Symp. 1 (2004).
  14. S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
    [CrossRef]
  15. J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885-1902 (2003).
    [CrossRef]
  16. A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
    [CrossRef]
  17. J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).
  18. S. Kenderian and B. B. Djordjevic, “Narrow band laser-generated surface acoustic waves using a formed source in the ablative regime,” J. Acoust. Soc. Am. 113, 261-266 (2003).
    [CrossRef] [PubMed]
  19. F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
    [CrossRef]
  20. A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
    [CrossRef]
  21. J. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485-499(1986).
    [CrossRef]
  22. R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139-R168 (1999).
    [CrossRef]
  23. A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
    [CrossRef]
  24. S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).
  25. H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
    [CrossRef]
  26. T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
    [CrossRef]
  27. P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34, 1-8 (1996).
    [CrossRef]
  28. D. Royer and C. Chenu, “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,” Ultrasonics 38, 891-895 (2000).
    [CrossRef] [PubMed]
  29. H. C. Wang, S. Fleming, and Y. C. Lee, “Ultrasonic wave detection using a simple design of optical fiber interferometer,” presented at the Opto-Electronics and Communications Conference (OECC)/Australian Conference on Optical Fibre Technology (ACOFT), Sydney, Australia, 7-10 July 2008.
  30. A. Briggs, Acoustic Microscopy (Clarendon, 1992).
  31. S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
    [CrossRef] [PubMed]
  32. J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

2006 (1)

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

2005 (1)

H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
[CrossRef]

2004 (4)

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

I. Arias and J. D. Achenbach, “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique,” Wave Motion 39, 61-75 (2004).
[CrossRef]

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172-181 (2004).
[CrossRef] [PubMed]

K. L. Telschow, “Material property measurement in hostile environments using laser acoustics,” Proc.-IEEE Ultrason. Symp. 1 (2004).

2003 (2)

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885-1902 (2003).
[CrossRef]

S. Kenderian and B. B. Djordjevic, “Narrow band laser-generated surface acoustic waves using a formed source in the ablative regime,” J. Acoust. Soc. Am. 113, 261-266 (2003).
[CrossRef] [PubMed]

2001 (1)

D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
[CrossRef]

2000 (4)

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

D. Royer and C. Chenu, “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,” Ultrasonics 38, 891-895 (2000).
[CrossRef] [PubMed]

1999 (2)

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

1998 (1)

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

1996 (1)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34, 1-8 (1996).
[CrossRef]

1993 (1)

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

1992 (2)

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227-238 (1992).
[CrossRef]

D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
[CrossRef]

1991 (1)

J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).

1989 (1)

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
[CrossRef] [PubMed]

1987 (1)

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

1986 (1)

J. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485-499(1986).
[CrossRef]

1982 (1)

A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
[CrossRef]

Achenbach, J. D.

I. Arias and J. D. Achenbach, “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique,” Wave Motion 39, 61-75 (2004).
[CrossRef]

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885-1902 (2003).
[CrossRef]

J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).

J. D. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 1984).

Aindow, A. M.

A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
[CrossRef]

Arias, I.

I. Arias and J. D. Achenbach, “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique,” Wave Motion 39, 61-75 (2004).
[CrossRef]

Atique, S.

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Banet, M. J.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

Bennis, A.

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

Berndt, T. P.

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

Betz, D.

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Briggs, A.

A. Briggs, Acoustic Microscopy (Clarendon, 1992).

Briggs, G. A.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
[CrossRef] [PubMed]

Chenu, C.

D. Royer and C. Chenu, “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,” Ultrasonics 38, 891-895 (2000).
[CrossRef] [PubMed]

Chubachi, N.

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Culshaw, B.

H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
[CrossRef]

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Davies, S. J.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

de Rostyne, K. Van

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Dewhurst, R. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
[CrossRef]

Djordjevic, B. B.

S. Kenderian and B. B. Djordjevic, “Narrow band laser-generated surface acoustic waves using a formed source in the ablative regime,” J. Acoust. Soc. Am. 113, 261-266 (2003).
[CrossRef] [PubMed]

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

Dong, F.

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Doyle, P. A.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34, 1-8 (1996).
[CrossRef]

Drain, L. E.

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

Dunn, F.

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Edwards, C.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

Fleming, S.

H. C. Wang, S. Fleming, and Y. C. Lee, “Ultrasonic wave detection using a simple design of optical fiber interferometer,” presented at the Opto-Electronics and Communications Conference (OECC)/Australian Conference on Optical Fibre Technology (ACOFT), Sydney, Australia, 7-10 July 2008.

Gao, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Glorieux, C.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Griepentrog, M.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

Ha, K. L.

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Hatrick, D.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

Hess, P.

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227-238 (1992).
[CrossRef]

Huang, J.

J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).

Hurley, D. C.

D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
[CrossRef]

Jang, T. S.

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

Kato, H.

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Kenderian, S.

S. Kenderian and B. B. Djordjevic, “Narrow band laser-generated surface acoustic waves using a formed source in the ablative regime,” J. Acoust. Soc. Am. 113, 261-266 (2003).
[CrossRef] [PubMed]

Krishnaswamy, S.

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172-181 (2004).
[CrossRef] [PubMed]

J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).

Kruger, S. E.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Kundu, T.

T. Kundu, ed. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, 2004).

Kushibiki, J.

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Kwon, B.

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

Lauriks, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Lee, J.

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

Lee, J. J.

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

Lee, S. S.

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

Lee, Y. C.

H. C. Wang, S. Fleming, and Y. C. Lee, “Ultrasonic wave detection using a simple design of optical fiber interferometer,” presented at the Opto-Electronics and Communications Conference (OECC)/Australian Conference on Optical Fibre Technology (ACOFT), Sydney, Australia, 7-10 July 2008.

Lomonosov, A. M.

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

Maznev, A. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

Monchalin, J.

J. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485-499(1986).
[CrossRef]

Murfin, A. S.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

Nelson, K. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

Neubrand, A.

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227-238 (1992).
[CrossRef]

Palmer, S. B.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
[CrossRef]

Park, H. S.

H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
[CrossRef]

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Peck, S. D.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
[CrossRef] [PubMed]

Richards, A. J.

D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
[CrossRef]

Rogers, J. A.

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

Rose, J. L.

J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, 1999).

Rowe, J. M.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
[CrossRef] [PubMed]

Royer, D.

D. Royer and C. Chenu, “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,” Ultrasonics 38, 891-895 (2000).
[CrossRef] [PubMed]

Scala, C. M.

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34, 1-8 (1996).
[CrossRef]

Scalea, F. L. D.

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

Scheibe, H. J.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

Schneider, D.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
[CrossRef]

Schultrich, B.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
[CrossRef]

Schwarz, T.

D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
[CrossRef]

Scruby, C. S.

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

Shan, Q.

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

Shen, Z. H.

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

Soden, R. A. J.

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

Sohn, Y.

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172-181 (2004).
[CrossRef] [PubMed]

Sorazu, B.

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Spicer, J. B.

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

Taylor, G. S.

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

Telschow, K. L.

K. L. Telschow, “Material property measurement in hostile environments using laser acoustics,” Proc.-IEEE Ultrason. Symp. 1 (2004).

Tewary, V. K.

D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
[CrossRef]

Thoen, J.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

Thursby, G.

H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
[CrossRef]

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

Wang, H. C.

H. C. Wang, S. Fleming, and Y. C. Lee, “Ultrasonic wave detection using a simple design of optical fiber interferometer,” presented at the Opto-Electronics and Communications Conference (OECC)/Australian Conference on Optical Fibre Technology (ACOFT), Sydney, Australia, 7-10 July 2008.

Ziegele, H.

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical generation and characterization of acoustic waves in thin films: fundamentals and applications,” Annu. Rev. Mater. Sci. 30, 117-157 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

A. Bennis, A. M. Lomonosov, Z. H. Shen, and P. Hess, “Laser-based measurement of elastic and mechanical properties of layered polycrystalline silicon structures with projection masks,” Appl. Phys. Lett. 88, 101915 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

J. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485-499(1986).
[CrossRef]

T. S. Jang, S. S. Lee, B. Kwon, J. Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 767-775 (June 2002).
[CrossRef]

F. L. D. Scalea, T. P. Berndt, J. B. Spicer, and B. B. Djordjevic, “Remote laser generation of narrow-band surface waves through optical fibers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1551-1557 (1999).
[CrossRef]

J. Acoust. Soc. Am. (2)

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172-181 (2004).
[CrossRef] [PubMed]

S. Kenderian and B. B. Djordjevic, “Narrow band laser-generated surface acoustic waves using a formed source in the ablative regime,” J. Acoust. Soc. Am. 113, 261-266 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227-238 (1992).
[CrossRef]

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394-4400 (2000).
[CrossRef]

J. Dent. Res. (1)

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107-112 (1989).
[CrossRef] [PubMed]

J. Mech. Phys. Solids (1)

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885-1902 (2003).
[CrossRef]

J. Opt. (1)

S. Atique, D. Betz, B. Culshaw, F. Dong, H. S. Park, G. Thursby, and B. Sorazu, “Detecting ultrasound using optical fibres,” J. Opt. 33, 231-238 (2004).

J. Phys. D (1)

S. J. Davies, C. Edwards, G. S. Taylor, and S. B. Palmer, “Laser-generated ultrasound: its properties, mechanisms and multifarious applications,” J. Phys. D 26, 329-348 (1993).
[CrossRef]

Meas. Sci. Technol. (4)

D. C. Hurley, V. K. Tewary, and A. J. Richards, “Surface acoustic wave methods to determine the anisotropic elastic properties of thin films,” Meas. Sci. Technol. 12, 1486-1494 (2001).
[CrossRef]

H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fiber Fabry-Perot interferometer,” Meas. Sci. Technol. 16, 1261-1266 (2005).
[CrossRef]

R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10, R139-R168 (1999).
[CrossRef]

A. S. Murfin, R. A. J. Soden, D. Hatrick, and R. J. Dewhurst, “Laser-ultrasound detection systems: a comparative study with Rayleigh waves,” Meas. Sci. Technol. 11, 1208-1219(2000).
[CrossRef]

Opt. Commun. (1)

A. M. Aindow, R. J. Dewhurst, and S. B. Palmer, “Laser-generation of directional surface acoustic wave pulses in metals,” Opt. Commun. 42, 116-120 (1982).
[CrossRef]

Proc.-IEEE Ultrason. Symp. (3)

J. Huang, S. Krishnaswamy, and J. D. Achenbach, “Laser-generation of narrow-band surface waves,” Proc.-IEEE Ultrason. Symp. 1, 537-541 (1991).

K. L. Telschow, “Material property measurement in hostile environments using laser acoustics,” Proc.-IEEE Ultrason. Symp. 1 (2004).

J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of acoustic microscopy to dental material characterization,” Proc.-IEEE Ultrason. Symp. 837-842(1987).

Thin Solid Films (2)

D. Schneider, T. Schwarz, and B. Schultrich, “Determination of elastic modulus and thickness of surface layers by ultrasonic surface waves,” Thin Solid Films 219, 92-102 (1992).
[CrossRef]

D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332, 157-163(1998).
[CrossRef]

Ultrasonics (2)

P. A. Doyle and C. M. Scala, “Near-field ultrasonic Rayleigh waves from a laser line source,” Ultrasonics 34, 1-8 (1996).
[CrossRef]

D. Royer and C. Chenu, “Experimental and theoretical waveforms of Rayleigh waves generated by a thermoelastic laser line source,” Ultrasonics 38, 891-895 (2000).
[CrossRef] [PubMed]

Wave Motion (1)

I. Arias and J. D. Achenbach, “A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique,” Wave Motion 39, 61-75 (2004).
[CrossRef]

Other (6)

J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, 1999).

J. D. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 1984).

T. Kundu, ed. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, 2004).

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

H. C. Wang, S. Fleming, and Y. C. Lee, “Ultrasonic wave detection using a simple design of optical fiber interferometer,” presented at the Opto-Electronics and Communications Conference (OECC)/Australian Conference on Optical Fibre Technology (ACOFT), Sydney, Australia, 7-10 July 2008.

A. Briggs, Acoustic Microscopy (Clarendon, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the grating mask image projection method.

Fig. 2
Fig. 2

Single line source on a half-space.

Fig. 3
Fig. 3

Schematic of the OFI, showing its operation principle.

Fig. 4
Fig. 4

Experiment arrangement.

Fig. 5
Fig. 5

Comparison between simulation and unfiltered experimental waveforms for mask No. 5 at a distance of (a)  1 mm and (b)  9 mm away from source.

Fig. 6
Fig. 6

Signal waveforms with corresponding frequency spectra generated using different masks: (a) mask No. 3, (b) mask No. 5, (c) mask No. 7, (d) mask No. 10.

Fig. 7
Fig. 7

Signals measured with a 1 mm separation for determining the Rayleigh velocity. (a)  6 MHz signals, (b)  33 MHz signals.

Fig. 8
Fig. 8

Photo of the measurement of an extracted human incisor.

Fig. 9
Fig. 9

Narrowband SAW signals recorded on extracted human incisor using (a) mask No. 3 and (b) mask No. 5.

Tables (1)

Tables Icon

Table 1 Estimated Expected Period, T, of the Laser Grating Irradiated on the Sample for Ten Masks with Different Periods P

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z λ = c / f ,
c 0 . 87 + 1 . 12 v 1 + v E 2 ρ ( 1 + v ) ,
W 2 f / N .
u ( x , t ) = A · q ( t ) H ( x , t ) ,
u N ( x , t ) = n = 1 N u ( x , t n P c ) .

Metrics