Abstract

In laser speckle contrast analysis (LASCA) used for imaging of blood flow, besides the moving blood cells, the speckle pattern is also influenced by the imaging system and scattering properties of the laser- illuminated static surface. A latex microsphere (650nm size) emulsion was covered with scattering semitransparent materials (Teflon foils, tracing paper). Speckle images were recorded with different exposure times (0.2ms500ms), and correlation times were determined by parameterizing the theoretical contrast-exposure time function. The correlation times obtained for covered and uncovered microsphere emulsions were in good agreement. The possibility of obtaining comparable, setup-independent results in blood perfusion monitoring can contribute to better applicability of LASCA.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981).
    [CrossRef]
  2. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  3. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  4. L. F. Rojas, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004).
    [CrossRef]
  5. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9-15 (2008).
    [CrossRef]
  6. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886-2888 (2008).
    [CrossRef] [PubMed]
  7. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28-30 (2003).
    [CrossRef] [PubMed]
  8. A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
    [CrossRef]
  9. Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, and T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020-3029 (1992).
    [CrossRef] [PubMed]
  10. M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
    [CrossRef] [PubMed]
  11. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
    [CrossRef] [PubMed]
  12. B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
    [CrossRef] [PubMed]
  13. H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
    [CrossRef] [PubMed]
  14. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
    [CrossRef] [PubMed]
  15. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465-3467 (2006).
    [CrossRef] [PubMed]
  16. A. C. Völker, P. Zakharov, B. Weber, A. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782-9787 (2005).
    [CrossRef] [PubMed]

2008

2006

2005

A. C. Völker, P. Zakharov, B. Weber, A. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782-9787 (2005).
[CrossRef] [PubMed]

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

2004

L. F. Rojas, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004).
[CrossRef]

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

2003

1999

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

1996

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

1993

B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
[CrossRef] [PubMed]

1992

1981

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Abendroth, D.

B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
[CrossRef] [PubMed]

Aizu, Y.

Andermann, M. L.

Araie, M.

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

Asakura, T.

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Boas, D. A.

Bolay, H.

Bray, R. C.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Brown, B. R.

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

Buck, A.

Cheng, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Choi, B.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Dale, A. M.

Devor, A.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Duncan, D. D.

Dunn, A. K.

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Easley, K. A.

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Forrester, K. R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Frank, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Fujii, H.

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Gong, H.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Jones, S. C.

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Kharlamov, A.

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

Kirkpatrick, S. J.

Lacoste, D.

Lenke, R.

Lindsay, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Liu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Lu, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Luo, Q.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Moskowitz, M. A.

Nagahara, M.

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Ogino, K.

Rojas, L. F.

Ruth, B.

B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
[CrossRef] [PubMed]

Scheffold, F.

Schmand, J.

B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
[CrossRef] [PubMed]

Schurtenberger, P.

Stewart, C. J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Sugita, T.

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Takai, N.

Tamaki, Y.

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

Tulip, J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

Völker, A.

Völker, A. C.

Wang, R. K.

Weber, B.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Wells-Gray, E. M.

Yamamoto, T.

Zakharov, P.

Zeng, S.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Burns

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31, 744-752 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Ophthalmol.

M. Nagahara, Y. Tamaki, M. Araie, and H. Fujii, “Real-time blood velocity measurements in human retinal vein using the laser speckle phenomenon,” Jpn. J. Ophthalmol. 43, 186-195 (1999).
[CrossRef] [PubMed]

Lasers Surg. Med.

B. Ruth, J. Schmand, and D. Abendroth, “Noncontact determination of skin blood flow using the laser speckle method: application to patients with peripheral arterial occlusive disease (PAOD) and to type-I diabetics,” Lasers Surg. Med. 13, 179-188 (1993).
[CrossRef] [PubMed]

Microvasc. Res.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-146 (2004).
[CrossRef] [PubMed]

Neurosci. Lett. Suppl.

A. Kharlamov, B. R. Brown, K. A. Easley, and S. C. Jones, “Heterogeneous response of cerebral blood flow to hypotension demonstrated by laser speckle imaging flowmetry in rats,” Neurosci. Lett. Suppl. 368, 151-156 (2004).
[CrossRef]

Opt. Commun.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

H. Cheng, Q. Luo, Q. Liu, Q. Lu, H. Gong, and S. Zeng, “Laser speckle imaging of blood flow in microcirculation,” Phys. Med. Biol. 49, 1347-1357 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used for modeling the effect of static scattering (from the skin surface) on blood perfusion measurements using laser speckle contrast analysis.

Fig. 2
Fig. 2

Exposure dependence of speckle contrast measured on uncovered polystyrene microsphere emulsion (■) and emulsion situated under 50 μm thick Teflon foil (▲). The experimental data were fitted with Eqs. (5) (a) and (6) (b).

Fig. 3
Fig. 3

Plots of theoretical Eqs. (2, 3) as the function of 0.57 × T / τ and T / τ , respectively. It is clearly visible that the difference between the two curves is small.

Tables (2)

Tables Icon

Table 1 Correlation Times and Their Relative Error Determined with Fittings of Eqs. (5) ( τ 1 ) and (6) ( τ 2 ) on the Experimental Data Measured on Uncovered and Teflon Covered Microsphere Emulsion a

Tables Icon

Table 2 τ Correlation Time Values Calculated Using Eq. (6) in the Presence of Different Scattering Layers as Compared to the Uncovered Microsphere Emulsion ( τ uncovered ) and Their Relative Fitting Error a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

K 2 ( T ) = 1 T 0 T C 2 ( t ) d t .
K ( T ) = { τ 2 T [ 1 exp ( 2 T τ ) ] } 1 / 2 .
K ( T ) = { τ 2 2 T 2 [ exp ( 2 T τ ) 1 + 2 T τ ] } 1 / 2 .
K 2 ( T ) = P 1 2 [ 1 T 0 T C 2 ( t ) d t + P 2 ] .
K 1 ( T ) = P 1 { τ 2 T [ 1 exp ( 2 T τ ) ] + P 2 } 1 / 2 ,
K 2 ( T ) = P 1 { τ 2 2 T 2 [ exp ( 2 T τ ) 1 + 2 T τ ] + P 2 } 1 / 2 .

Metrics