Abstract

In this paper, acousto-optic interaction between laser light and cylindrical airborne ultrasound in both He–Ne laser and argon-ion laser cavities is considered. The modulation properties of these acousto-optic systems were studied. The schlieren technique has been used to visualize a cylindrical ultrasonic wave generated in the air by radial vibration of a cylindrical piezoelectric shell. It was revealed that acoustic nonlinear effects together with acoustic absorption appear in the vicinity of the axis, where the ultrasound is focused. The observed waveforms of ultrasonic wave correspond to the curves of modulation of laser light.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Hargrove, “Diffraction of a Gaussian light beam by ultrasonic cylindrical standing waves,” J. Acoust. Soc. Am. 51, 888-893 (1972).
    [CrossRef]
  2. I. Grulkowski, and P. Kwiek, “Interaction of light with cylindrical ultrasonic wave,” Arch. Acoust. 30, 107-114(2005).
  3. I. Grulkowski, P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267, 14-19 (2006).
    [CrossRef]
  4. K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).
  5. I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).
  6. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870-5876 (2007).
    [CrossRef] [PubMed]
  7. I. Grulkowski, and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154, 77-83 (2008).
    [CrossRef]
  8. I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of light with standing cylindrical ultrasonic wave in air,” presented at the International Congress of Ultrasonics, Vienna, Austria, 9-13 April 2007, http://proceedings.icultrasonics.org/.
  9. I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” in Proceedings of the 19th International Congress on Acoustics (CD-ROM), A. Calvo-Manzano, A. Perez-Lopez, and J. S. Santiago, eds. (Spanish Acoustical Society, 2007), paper ULT-17-004.
  10. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33, 2146-2148(2008).
    [CrossRef] [PubMed]
  11. T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).
  12. T. Neumann, and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,“ Ultrasonics 44, e1561-e1566 (2006).
    [CrossRef] [PubMed]
  13. R. T. Beyer, Nonlinear Acoustics (Acoustical Society of America, 1997).

2008

I. Grulkowski, and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154, 77-83 (2008).
[CrossRef]

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33, 2146-2148(2008).
[CrossRef] [PubMed]

2007

2006

T. Neumann, and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,“ Ultrasonics 44, e1561-e1566 (2006).
[CrossRef] [PubMed]

I. Grulkowski, P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267, 14-19 (2006).
[CrossRef]

K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).

2005

I. Grulkowski, and P. Kwiek, “Interaction of light with cylindrical ultrasonic wave,” Arch. Acoust. 30, 107-114(2005).

1972

L. E. Hargrove, “Diffraction of a Gaussian light beam by ultrasonic cylindrical standing waves,” J. Acoust. Soc. Am. 51, 888-893 (1972).
[CrossRef]

Arnold, C. B.

Beyer, R. T.

R. T. Beyer, Nonlinear Acoustics (Acoustical Society of America, 1997).

Ermert, H.

T. Neumann, and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,“ Ultrasonics 44, e1561-e1566 (2006).
[CrossRef] [PubMed]

Ferria, K.

K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).

Greenleaf, J. F.

T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).

Grulkowski, I.

I. Grulkowski, and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154, 77-83 (2008).
[CrossRef]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870-5876 (2007).
[CrossRef] [PubMed]

K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).

I. Grulkowski, P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267, 14-19 (2006).
[CrossRef]

I. Grulkowski, and P. Kwiek, “Interaction of light with cylindrical ultrasonic wave,” Arch. Acoust. 30, 107-114(2005).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” in Proceedings of the 19th International Congress on Acoustics (CD-ROM), A. Calvo-Manzano, A. Perez-Lopez, and J. S. Santiago, eds. (Spanish Acoustical Society, 2007), paper ULT-17-004.

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of light with standing cylindrical ultrasonic wave in air,” presented at the International Congress of Ultrasonics, Vienna, Austria, 9-13 April 2007, http://proceedings.icultrasonics.org/.

Hargrove, L. E.

L. E. Hargrove, “Diffraction of a Gaussian light beam by ultrasonic cylindrical standing waves,” J. Acoust. Soc. Am. 51, 888-893 (1972).
[CrossRef]

Jankowski, D.

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870-5876 (2007).
[CrossRef] [PubMed]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” in Proceedings of the 19th International Congress on Acoustics (CD-ROM), A. Calvo-Manzano, A. Perez-Lopez, and J. S. Santiago, eds. (Spanish Acoustical Society, 2007), paper ULT-17-004.

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of light with standing cylindrical ultrasonic wave in air,” presented at the International Congress of Ultrasonics, Vienna, Austria, 9-13 April 2007, http://proceedings.icultrasonics.org/.

Kinnick, R. R.

T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).

Kwiek, P.

I. Grulkowski, and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154, 77-83 (2008).
[CrossRef]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46, 5870-5876 (2007).
[CrossRef] [PubMed]

I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).

K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).

I. Grulkowski, P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267, 14-19 (2006).
[CrossRef]

I. Grulkowski, and P. Kwiek, “Interaction of light with cylindrical ultrasonic wave,” Arch. Acoust. 30, 107-114(2005).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” in Proceedings of the 19th International Congress on Acoustics (CD-ROM), A. Calvo-Manzano, A. Perez-Lopez, and J. S. Santiago, eds. (Spanish Acoustical Society, 2007), paper ULT-17-004.

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of light with standing cylindrical ultrasonic wave in air,” presented at the International Congress of Ultrasonics, Vienna, Austria, 9-13 April 2007, http://proceedings.icultrasonics.org/.

Lu, J.-Y.

T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).

McLeod, E.

Mermillod-Blondin, A.

Neumann, T.

T. Neumann, and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,“ Ultrasonics 44, e1561-e1566 (2006).
[CrossRef] [PubMed]

Pitts, T. A.

T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).

Appl. Opt.

Arch. Acoust.

I. Grulkowski, and P. Kwiek, “Interaction of light with cylindrical ultrasonic wave,” Arch. Acoust. 30, 107-114(2005).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Holographic imaging of cylindrical ultrasonic waves,” Arch. Acoust. 31, 137-142 (2006).

Eur. Phys. J. Spec. Top.

I. Grulkowski, and P. Kwiek, “Successive diffraction model based on Fourier optics as a tool for the studies of light interaction with arbitrary ultrasonic field,” Eur. Phys. J. Spec. Top. 154, 77-83 (2008).
[CrossRef]

J. Acoust. Soc. Am.

L. E. Hargrove, “Diffraction of a Gaussian light beam by ultrasonic cylindrical standing waves,” J. Acoust. Soc. Am. 51, 888-893 (1972).
[CrossRef]

J. Phys. IV

K. Ferria, I. Grulkowski, and P. Kwiek, “Acousto-optic lens based on interaction of narrow laser beam with cylindrical ultrasound,” J. Phys. IV 137, 67-72 (2006).

Opt. Commun.

I. Grulkowski, P. Kwiek, “Experimental study of light diffraction by standing ultrasonic wave with cylindrical symmetry,” Opt. Commun. 267, 14-19 (2006).
[CrossRef]

Opt. Lett.

Ultrasonics

T. Neumann, and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,“ Ultrasonics 44, e1561-e1566 (2006).
[CrossRef] [PubMed]

Other

R. T. Beyer, Nonlinear Acoustics (Acoustical Society of America, 1997).

T. A. Pitts, J. F. Greenleaf, J.-Y. Lu, and R. R. Kinnick, “Tomographic Schlieren imaging for measurement of beam pressure and intensity,” Proc.-IEEE Ultrason. Symp. 3, 1665-16681994).

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of light with standing cylindrical ultrasonic wave in air,” presented at the International Congress of Ultrasonics, Vienna, Austria, 9-13 April 2007, http://proceedings.icultrasonics.org/.

I. Grulkowski, D. Jankowski, and P. Kwiek, “Interaction of Gaussian laser beam with the ultrasonic wave of cylindrical symmetry,” in Proceedings of the 19th International Congress on Acoustics (CD-ROM), A. Calvo-Manzano, A. Perez-Lopez, and J. S. Santiago, eds. (Spanish Acoustical Society, 2007), paper ULT-17-004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Acoustic pressure distribution in the lossless medium ( F = 3912.45 kHz ) (a). Far-field patterns of Gaussian laser beam interaction with the cylindrical ultrasound. Raman–Nath diffraction ( F = 3912.45 kHz , λ = 488 nm , Klein–Cook parameter Q = 0.48 ) (b). Bragg diffraction of the convergent laser beam ( F = 24433.9 kHz , λ = 488 nm , Klein–Cook parameter Q = 18.52 ) (c).

Fig. 2
Fig. 2

Experimental setup for schlieren imaging (a) and studies of intracavity modulation of light (b).

Fig. 3
Fig. 3

Schlieren image of cylindrical ultrasonic wave in air ( F = 452 kHz , T = 2.21 μs , U = 35 V ) (a). Modulation of light intensity in the center of schlieren image (b).

Fig. 4
Fig. 4

Acousto-optic intracavity light modulation for the (a) He–Ne laser and (b) argon-ion laser ( F = 452 kHz , T = 2.21 μs ).

Fig. 5
Fig. 5

Voltage U necessary to switch off the argon-ion laser versus power P emitted by the laser. The modulator was placed in the laser cavity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ p ( r , t ) = p 0 J 0 ( Kr ) cos ( Ω t ) ,

Metrics