Abstract

The paper presents results on acousto-optic investigation of unusual acoustic phenomena taking place in crystals possessing strong anisotropy of elastic properties. Advantages of the applied method of analysis are demonstrated by the example of the commonly used acousto-optic material tellurium dioxide. The major goal of the research consists of experimental verification of theoretical conclusions related to peculiar cases of acoustic propagation and reflection recently observed in the crystalline material. In particular, the case of glancing incidence and the following reflection of elastic energy from a free boundary separating the paratellurite crystal and the vacuum is examined in the paper. It is shown in the acousto-optic experiment that, in the case of glancing incidence, energy flow of a reflected acoustic wave may propagate practically in a reverse direction with respect to an incident wave. It is also proved that strong elastic anisotropy of the crystal is responsible for the unusual propagation and reflection of the acoustic waves. The research confirms the conclusion that the examined acoustic effects may be useful in development of new acousto-optic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Korpel, Acousto-Optics (Marcel Dekker, 1997).
  2. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  3. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).
  4. A. P. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).
  5. B. A. Auld, Acoustic Fields and Waves in Solids (Robert Krieger, 1990).
  6. N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969).
    [CrossRef]
  7. Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
    [CrossRef]
  8. G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968).
    [CrossRef]
  9. E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979).
    [CrossRef]
  10. D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
    [CrossRef]
  11. J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
    [CrossRef]
  12. J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
    [CrossRef]
  13. Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
    [CrossRef]
  14. V. B. Voloshinov, “Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal,” Ultrasonics 31, 333-338(1993).
    [CrossRef]
  15. N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004).
    [CrossRef]
  16. V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).
  17. M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
    [CrossRef]
  18. N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).
  19. V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
    [CrossRef]
  20. A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).
  21. M. J. Musgrave, “Refraction and reflection of plane elastic waves at a plane boundary between aeolotropic media,” Geophys. J. R. Astron. Soc. 3, 406-418 (1960).
  22. S. E. Harris and R. D. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969).
    [CrossRef]
  23. S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
    [CrossRef]
  24. I. C. Chang, “Collinear beam acousto-optic tunable filters,” Electron. Lett. 28, 1225-1226 (1992).
    [CrossRef]
  25. V. B. Voloshinov, “Close to collinear acousto-optic interaction in paratellurite,” Opt. Eng. 31, 2089-2094 (1992).
    [CrossRef]
  26. V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).
  27. I. C. Chang, “Tunable acousto-optic filter utilizing acoustic beam walk-off in crystal quartz,” Appl. Phys. Lett. 25, 323-324(1974).
    [CrossRef]
  28. C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999).
    [CrossRef]
  29. J. Sapriel, D. Charissoux, and V. B. Voloshinov, “Tunable acousto-optic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 864-871 (2002).
    [CrossRef]
  30. V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

2008 (1)

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

2006 (1)

V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).

2005 (2)

N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).

V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
[CrossRef]

2004 (1)

N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004).
[CrossRef]

2003 (1)

V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).

2002 (2)

J. Sapriel, D. Charissoux, and V. B. Voloshinov, “Tunable acousto-optic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 864-871 (2002).
[CrossRef]

Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
[CrossRef]

1999 (1)

C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999).
[CrossRef]

1998 (1)

J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
[CrossRef]

1993 (2)

V. B. Voloshinov, “Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal,” Ultrasonics 31, 333-338(1993).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

1992 (3)

M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
[CrossRef]

I. C. Chang, “Collinear beam acousto-optic tunable filters,” Electron. Lett. 28, 1225-1226 (1992).
[CrossRef]

V. B. Voloshinov, “Close to collinear acousto-optic interaction in paratellurite,” Opt. Eng. 31, 2089-2094 (1992).
[CrossRef]

1986 (1)

D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
[CrossRef]

1983 (1)

A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).

1979 (1)

E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979).
[CrossRef]

1974 (1)

I. C. Chang, “Tunable acousto-optic filter utilizing acoustic beam walk-off in crystal quartz,” Appl. Phys. Lett. 25, 323-324(1974).
[CrossRef]

1972 (1)

Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
[CrossRef]

1970 (1)

S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
[CrossRef]

1969 (2)

S. E. Harris and R. D. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969).
[CrossRef]

N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969).
[CrossRef]

1968 (1)

G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968).
[CrossRef]

1960 (1)

M. J. Musgrave, “Refraction and reflection of plane elastic waves at a plane boundary between aeolotropic media,” Geophys. J. R. Astron. Soc. 3, 406-418 (1960).

Artl, G.

G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968).
[CrossRef]

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids (Robert Krieger, 1990).

Bridoux, E.

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Bruneel, C.

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Chang, I. C.

I. C. Chang, “Collinear beam acousto-optic tunable filters,” Electron. Lett. 28, 1225-1226 (1992).
[CrossRef]

I. C. Chang, “Tunable acousto-optic filter utilizing acoustic beam walk-off in crystal quartz,” Appl. Phys. Lett. 25, 323-324(1974).
[CrossRef]

Charissoux, D.

Chen, W. H.

E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979).
[CrossRef]

Fiegelson, R. S.

S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
[CrossRef]

Gazalet, M. G.

J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Gharbi, M.

J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
[CrossRef]

Gierus, A. V.

A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).

Gottlieb, M.

M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
[CrossRef]

Goutzoulis, A.

M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

Harris, S. E.

S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
[CrossRef]

S. E. Harris and R. D. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969).
[CrossRef]

Huang, G.-C.

C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999).
[CrossRef]

Hurley, D. C.

D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
[CrossRef]

Kastelik, J. C.

J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Korpel, A.

A. Korpel, Acousto-Optics (Marcel Dekker, 1997).

Lean, E. G.

E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979).
[CrossRef]

Makarov, O. Yu.

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
[CrossRef]

McCarthy, K. A.

D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
[CrossRef]

Molchanov, V. Ya.

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

Mozhaev, V. G.

V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).

Musgrave, M. J.

M. J. Musgrave, “Refraction and reflection of plane elastic waves at a plane boundary between aeolotropic media,” Geophys. J. R. Astron. Soc. 3, 406-418 (1960).

Nieh, S. T. K.

S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
[CrossRef]

Niizeki, N.

Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
[CrossRef]

Ochmachi, Y.

N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
[CrossRef]

Pape, D.

A. P. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

Polikarpova, N. V.

V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).

V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
[CrossRef]

N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).

N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004).
[CrossRef]

V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).

Proklov, V. V.

A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).

Sapriel, J.

Shweppe, H.

G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968).
[CrossRef]

Singh, N.

M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
[CrossRef]

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

Takigahira, M.

Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
[CrossRef]

Tamura, S.

Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
[CrossRef]

Tanaka, Y.

Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
[CrossRef]

Tran, C. D.

C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999).
[CrossRef]

Uchida, N.

Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
[CrossRef]

N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969).
[CrossRef]

Voloshinov, V. B.

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).

N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).

V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
[CrossRef]

N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004).
[CrossRef]

V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).

J. Sapriel, D. Charissoux, and V. B. Voloshinov, “Tunable acousto-optic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 864-871 (2002).
[CrossRef]

V. B. Voloshinov, “Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal,” Ultrasonics 31, 333-338(1993).
[CrossRef]

V. B. Voloshinov, “Close to collinear acousto-optic interaction in paratellurite,” Opt. Eng. 31, 2089-2094 (1992).
[CrossRef]

Wallace, R. D.

Wolfe, J. P.

D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
[CrossRef]

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Acoust. J. (1)

V. B. Voloshinov, N. V. Polikarpova, and V. G. Mozhaev, “Nearly backward reflection of bulk acoustic waves at grazing incidence in a TeO2 crystal,” Acoust. J. 52, 297-305 (2006).

Acta Acust. Acust. (1)

V. B. Voloshinov and N. V. Polikarpova, “Application of acousto-optic interactions in anisotropic media for control of light radiation,” Acta Acust. Acust. 89, 930-935 (2003).

Appl. Phys. Lett. (3)

I. C. Chang, “Tunable acousto-optic filter utilizing acoustic beam walk-off in crystal quartz,” Appl. Phys. Lett. 25, 323-324(1974).
[CrossRef]

S. E. Harris, S. T. K. Nieh, and R. S. Fiegelson, “CaMoO4 electronically tunable optical filter,” Appl. Phys. Lett. 17, 223-225 (1970).
[CrossRef]

E. G. Lean and W. H. Chen, “Large angle beam steering in acoustically anisotropic crystal,” Appl. Phys. Lett. 35, 101-103(1979).
[CrossRef]

Electron. Lett. (1)

I. C. Chang, “Collinear beam acousto-optic tunable filters,” Electron. Lett. 28, 1225-1226 (1992).
[CrossRef]

Geophys. J. R. Astron. Soc. (1)

M. J. Musgrave, “Refraction and reflection of plane elastic waves at a plane boundary between aeolotropic media,” Geophys. J. R. Astron. Soc. 3, 406-418 (1960).

J. Acoust. Soc. Am. (1)

Y. Ohmachi, N. Uchida, and N. Niizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164-168 (1972).
[CrossRef]

J. Appl. Phys. (3)

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, “Acoustic shear wave propagation in paratellurite with reduced spreading,” J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

J. C. Kastelik, M. Gharbi, and M. G. Gazalet, “Paratellurite: propagation of slow shear wave in the (001) plane,” J. Appl. Phys. 84, 671-674 (1998).
[CrossRef]

N. Uchida and Y. Ochmachi, “Elastic and photoelastic properties of TeO2,” J. Appl. Phys. 40, 4692-4695 (1969).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Eng. (3)

V. B. Voloshinov, “Close to collinear acousto-optic interaction in paratellurite,” Opt. Eng. 31, 2089-2094 (1992).
[CrossRef]

C. D. Tran and G.-C. Huang, “Characterization of the collinear beam acousto-optic tunable filter,” Opt. Eng. 38, 1143-1148(1999).
[CrossRef]

M. Gottlieb, A. Goutzoulis, and N. Singh, “High-performance acousto-optic materials: Hg2Cl2 and PbBr2,” Opt. Eng. 31, 2110-2117 (1992).
[CrossRef]

Phys. Rev. (1)

Y. Tanaka, M. Takigahira, and S. Tamura, “Wave-front images of acoustic waves in the (100) and (001) surfaces of TeO2,” Phys. Rev. 66, 075409-075416 (2002).
[CrossRef]

Phys. Rev. B (1)

D. C. Hurley, J. P. Wolfe, and K. A. McCarthy, “Phonon focusing in tellurium dioxide,” Phys. Rev. B 33, 4189-4195 (1986).
[CrossRef]

Proc. SPIE (2)

N. V. Polikarpova and V. B. Voloshinov, “Glancing incidence and back reflection of elastic waves in tetragonal crystals,” Proc. SPIE 5953, 0C1-0C12 (2005).

N. V. Polikarpova and V. B. Voloshinov, “Intensity of reflected acoustic waves in acousto-optic crystal tellurium dioxide,” Proc. SPIE 5828, 25-36 (2004).
[CrossRef]

Quant. Electron. (1)

V. Ya. Molchanov, V. B. Voloshinov, and O. Yu. Makarov, “Quasi-collinear tunable acousto-optic filters intended for WDM applications,” Quant. Electron. (posted 10 June 2008, in press).

Solid State Commun. (1)

G. Artl and H. Shweppe, “Paratellurite a new piezoelectric material,” Solid State Commun. 6, 783-784 (1968).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

A. V. Gierus and V. V. Proklov, “Effects at skimming incidence of sound on a boundary in TeO2,” Sov. Phys. Tech. Phys. 25, 984-987 (1983).

Tech. Phys. Lett. (1)

V. B. Voloshinov, O. Yu. Makarov, and N. V. Polikarpova, “Nearly backward reflection of elastic waves in an acousto-optic crystal paratellurite,” Tech. Phys. Lett. 31, 352-355(2005).
[CrossRef]

Ultrasonics (1)

V. B. Voloshinov, “Anisotropic light diffraction on ultrasound in a tellurium dioxide single crystal,” Ultrasonics 31, 333-338(1993).
[CrossRef]

Other (5)

A. Korpel, Acousto-Optics (Marcel Dekker, 1997).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

A. P. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

B. A. Auld, Acoustic Fields and Waves in Solids (Robert Krieger, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Slowness curves in the X Y plane of paratellurite: (a) calculated dependences, (b) experimental result.

Fig. 2
Fig. 2

Propagation of acoustic waves in Te O 2 crystal: (a) visualization of the acoustic wave, (b) configuration of the specimen.

Fig. 3
Fig. 3

Propagation and reflection of acoustic waves in case of glancing incidence.

Fig. 4
Fig. 4

Acoustic wave vectors and group velocity vectors before and after the reflection.

Fig. 5
Fig. 5

Acoustic reflection of the slow acoustic mode in the X Y plane of paratellurite (a) diffraction pattern, (b) general view of the cell.

Fig. 6
Fig. 6

Transformation of the longitudinal wave into the slow shear acoustic wave along [ 110 ] axis of paratelurite.

Fig. 7
Fig. 7

Acousto-optic cell with acoustic energy propagating orthogonally to the optical facet of the crystal.

Fig. 8
Fig. 8

Configuration of a close to collinear acousto-optic tunable filter.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V 1 , 2 2 = ( 1 / 2 ρ ) { c 11 + c 66 [ ( c 66 - c ) 2 11 cos 2 2 φ + ( c 12 + c 66 ) 2 sin 2 2 φ ] 1 / 2 } , V 3 2 = c 44 / ρ ,
t g ψ = 1 4 ρ V 2 · ( c 12 + c 66 ) 2 - ( c 11 - c 66 ) 2 ( 2 ρ V 2 ) - ( c 11 + c 66 ) sin 4 φ .
I d / I = ( π 2 / 2 λ 2 cos 2 θ B ) M 2 P ( l / d ) ,
S k l = 0.5 ( r k m l + r l m k ) S 0 ,
( B i j + Δ B i j ) x i x j = ( B i j + p i j k l S k l ) x i x j = 1.
Δ B α = p α β S β = ( p 11 p 12 p 13 0 0 0 p 12 p 11 p 13 0 0 0 p 31 p 31 p 33 0 0 0 0 0 0 p 44 0 0 0 0 0 0 p 44 0 0 0 0 0 0 p 66 ) ( S 1 S 2 0 0 0 S 6 ) .
x 2 ( 1 n o 2 + p 11 S 1 + p 12 S 2 ) + y 2 ( 1 n o 2 + p 12 S 1 + p 11 S 2 ) + z 2 [ 1 n e 2 + p 31 ( S 1 + S 2 ) ] + 2 x y p 66 S 6 = 1 ,
x ¯ 2 [ ( cos 2 θ n o 2 + sin 2 θ n e 2 ) + Δ B x x ] + y ¯ 2 ( 1 n o 2 + Δ B y y ) + 2 Δ B x y x ¯ y ¯ = 1.
Δ B x x = p 31 ( S 1 + S 2 ) sin 2 θ B + p 11 ( S 1 cos 2 φ + S 2 sin 2 φ ) + p 12 ( S 1 sin 2 φ + S 2 cos 2 φ ) + p 66 S 6 sin 2 φ cos 2 θ ; Δ B y y = p 11 ( S 1 sin 2 φ + S 2 cos 2 φ ) + p 12 ( S 1 cos 2 φ + S 2 sin 2 φ ) - p 66 S 6 sin 2 φ ; Δ B x y = { [ p 11 ( S 2 - S 1 ) - p 12 ( S 2 - S 1 ) ] sin φ cos φ + p 66 S 6 cos 2 φ } cos θ .
I 2 / I 1 = ( M 2 ( 2 ) / M 2 ( 1 ) ) R 2 = 0.012.
I 3 / I 1 = ( M 2 ( 3 ) / M 2 ( 1 ) ) R 3 = 1.78.
I 3 / I 2 = ( M 2 ( 3 ) / M 2 ( 2 ) ) ( R 3 / R 2 ) = 174.

Metrics