Abstract

We present a physical model that explains several sequential stages of the conversion of optical to acoustical energy when irradiating diluted suspensions of metal nanoparticles with laser pulses. Optical absorption and scattering of a single particle driven by plasmon resonance interactions in an aqueous medium are considered. Thermal effects produced by laser-irradiated nanoparticles, dynamics of vapor bubble formation, and acoustic signals from expanding bubbles formed around heated nanoparticles are calculated. Stochastic features of the pressure magnitude emitted as a result of low-fluence irradiation of suspensions are also discussed. The probabilistic distribution of pressure magnitude from individual bubbles was found to obey Zipf’s law for low concentrations of nanoparticles, while increasing their concentration brings the pressure magnitude distribution into conformance with the Gaussian law.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription