Abstract

The peculiarities of the multibeam acousto-optic Bragg diffraction of light by a multifrequency acoustic signal are investigated. The investigation is related to design of fiber-optic space division switch multiplexer 1×N. It is proved that a specialized two-dimensional acousto-optic deflector can perform high efficiency multifunctional light switching of fiber-optic channels. The device has advanced characteristics—the number of channels is up to a few hundred, the switching time is about a few microseconds, and the cross talk is limited to 45dB.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yamazaki and M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228-1230 (1992).
    [CrossRef] [PubMed]
  2. H. Yamazaki, M. Yamaguchi, and K. Hirabayashi, “Estimation of the possible scale for holographic switches with liquid-crystal displays,” Appl. Opt. 34, 1333-1340 (1995).
    [CrossRef] [PubMed]
  3. R. Guerre, F. Fahrni, and P. Renaud, “Fast 10 μs microelectromechanical optical switch inside a planar hollow waveguide (PHW),” J. Lightwave Technol. 24, 1486-1498 (2006).
    [CrossRef]
  4. H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
    [CrossRef]
  5. Q. Wang and J. Yao, “A high speed 2×2 electro-optic switch using a polarization modulator,” Opt. Express 15, 16500-16505 (2007).
    [CrossRef] [PubMed]
  6. R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
    [CrossRef] [PubMed]
  7. R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.
  8. C. S. Tsai and P. Le, “4×4 nonblocking integrated acousto-optic space switch,” Appl. Phys. Lett. 60, 431-433 (1992).
    [CrossRef]
  9. C. S. Tsai and A. Kar-Roy, “8×8 symmetrical non-blocking integrated acousto-optic space switch module on LiNbO3,” IEEE Photon. Technol. Lett. 4, 731-734 (1992).
    [CrossRef]
  10. C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993).
    [CrossRef]
  11. D. O. Harris, “Multichannel acousto-optic crossbar switch,” Appl. Opt. 30, 4245-4256 (1991).
    [CrossRef] [PubMed]
  12. L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
    [CrossRef]
  13. L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
    [CrossRef]
  14. J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
    [CrossRef]
  15. A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
    [CrossRef]
  16. A. Korpel, Acousto-Optics (Dekker, 1988).
  17. D. Souilhac, D. Billerey, and A. Gundjian, “Infrared two-dimensional acousto-optic deflector using a tellurium crystal,” Appl. Opt. 29, 1798-1804 (1990).
    [CrossRef] [PubMed]
  18. A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).
  19. W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
    [CrossRef]
  20. D. O. Harris and A. Vanderlugt, “Multichannel acousto-optic crossbar switch with arbitrary signal fan-out,” Appl. Opt. 31, 1684-1686 (1992).
    [CrossRef] [PubMed]
  21. D. W. Prather and J. N. Mait, “Acousto-optic generation of two-dimensional spot arrays,” Opt. Lett. 16, 1720-1722 (1991).
    [CrossRef] [PubMed]
  22. P. Paparao, S. A. Boothroyd, W. M. Robertson, and J. Chrostowski, “Generation of reconfigurable interconnections with a 2-dimensional acousto-optic deflector,” Appl. Opt. 33, 2140-2146 (1994).
    [CrossRef] [PubMed]
  23. A. V. Danilyan, V. A. Shulgin, and V. E. Chernov, “Optimization of the input losses in fiber-optic communications with an acousto-optic all-optical switch,” Appl. Opt. 45, 4319-4324(2006).
    [CrossRef] [PubMed]
  24. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977).
    [CrossRef]
  25. V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).
  26. J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
    [CrossRef]
  27. E. Tervonen, A. T. Friberg, and J. Westerholm, “Programmable optical interconnections by multilevel synthetic acousto-optic holograms,” Opt. Lett. 16, 1274-1276 (1991).
    [CrossRef] [PubMed]
  28. S. N. Antonov, “Angular splitting of the Bragg diffraction order in an acoustooptical modulator due to a frequency-modulated acoustic wave,” Tech. Phys. 50, 513-516 (2005), translated from Zh. Tekhnicheskoj Fiziki (Russia) 75, 122-124 (2005).
    [CrossRef]
  29. S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007).
    [CrossRef]
  30. V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.
  31. S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
    [CrossRef]
  32. V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
    [CrossRef]
  33. T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
    [CrossRef]
  34. M. G. Gazalet, J. C. Kastelik, C. Bruneel, O. Bazzi, and E. Bridoux, “Acousto-optic multifrequency modulators-reduction of the phase-grating intermodulation products,” Appl. Opt. 32, 2455-2460 (1993).
    [CrossRef] [PubMed]
  35. P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
    [CrossRef]
  36. K. W. Goosen and J. A. Walker, “Monolithic optical fiber stub array,” Opt. Lett. 17, 381-383 (1992).
    [CrossRef]
  37. M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
    [CrossRef]
  38. A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
    [CrossRef]
  39. ThorLabs catalog, http://www.thorlabs.com.
  40. Sentronic booklet, http://www.sentronic.net.

2008

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

2007

S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007).
[CrossRef]

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
[CrossRef]

Q. Wang and J. Yao, “A high speed 2×2 electro-optic switch using a polarization modulator,” Opt. Express 15, 16500-16505 (2007).
[CrossRef] [PubMed]

2006

2005

S. N. Antonov, “Angular splitting of the Bragg diffraction order in an acoustooptical modulator due to a frequency-modulated acoustic wave,” Tech. Phys. 50, 513-516 (2005), translated from Zh. Tekhnicheskoj Fiziki (Russia) 75, 122-124 (2005).
[CrossRef]

2004

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

2000

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

1999

V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

1996

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

1995

1994

1993

M. G. Gazalet, J. C. Kastelik, C. Bruneel, O. Bazzi, and E. Bridoux, “Acousto-optic multifrequency modulators-reduction of the phase-grating intermodulation products,” Appl. Opt. 32, 2455-2460 (1993).
[CrossRef] [PubMed]

C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993).
[CrossRef]

1992

1991

1990

D. Souilhac, D. Billerey, and A. Gundjian, “Infrared two-dimensional acousto-optic deflector using a tellurium crystal,” Appl. Opt. 29, 1798-1804 (1990).
[CrossRef] [PubMed]

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
[CrossRef]

1977

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977).
[CrossRef]

1975

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Aboujeib, J.

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

Antonov, S. N.

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007).
[CrossRef]

S. N. Antonov, “Angular splitting of the Bragg diffraction order in an acoustooptical modulator due to a frequency-modulated acoustic wave,” Tech. Phys. 50, 513-516 (2005), translated from Zh. Tekhnicheskoj Fiziki (Russia) 75, 122-124 (2005).
[CrossRef]

V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.

V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
[CrossRef]

Asundi, A.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Balakshi, V. I.

V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).

Banwell, T. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Barocsi, A.

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

Bazzi, O.

Bihan, J. L.

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

Billerey, D.

Boothroyd, S. A.

Bridoux, E.

Bruneel, C.

Cheng, S. S.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Chernov, V. E.

Chiow, S.

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

Chollet, F.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Chrostowski, J.

Chu, S.

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

Danilyan, A. V.

Esser, G.

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

Fahrni, F.

Friberg, A. T.

E. Tervonen, A. T. Friberg, and J. Westerholm, “Programmable optical interconnections by multilevel synthetic acousto-optic holograms,” Opt. Lett. 16, 1274-1276 (1991).
[CrossRef] [PubMed]

J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
[CrossRef]

Fujita, H.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Fukumoto, A.

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Garvin, C.

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Gazalet, M. G.

Geiger, M.

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

Geng, F.

L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
[CrossRef]

Goosen, K. W.

Guerre, R.

Gundjian, A.

Harris, D. O.

Hecht, D. L.

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977).
[CrossRef]

Herrmann, S.

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

Hirabayashi, K.

Huang, P. C.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Jakab, L.

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

Kar-Roy, A.

C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993).
[CrossRef]

C. S. Tsai and A. Kar-Roy, “8×8 symmetrical non-blocking integrated acousto-optic space switch module on LiNbO3,” IEEE Photon. Technol. Lett. 4, 731-734 (1992).
[CrossRef]

Kastelik, J. C.

Kawabuichi, M.

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Korpel, A.

A. Korpel, Acousto-Optics (Dekker, 1988).

Lamott, A.

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

Le, P.

C. S. Tsai and P. Le, “4×4 nonblocking integrated acousto-optic space switch,” Appl. Phys. Lett. 60, 431-433 (1992).
[CrossRef]

Liu, A. Q.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Liu, Y.

L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
[CrossRef]

L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
[CrossRef]

Maak, P.

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Mait, J. N.

McLeod, R. R.

R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Mevel, Y.

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

Müller, H.

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

Paparao, P.

Perennou, A.

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

Prather, D. W.

Proklov, V. V.

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
[CrossRef]

V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.

Quintard, V.

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

Reith, L. A.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Renaud, P.

Rezvov, Yu. G.

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007).
[CrossRef]

V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.

V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
[CrossRef]

Richter, P.

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

Robertson, W. M.

Shulgin, V. A.

Sliwinski, A.

V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).

Souilhac, D.

Stark, M.

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

Stephens, W. E.

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Tervonen, E.

E. Tervonen, A. T. Friberg, and J. Westerholm, “Programmable optical interconnections by multilevel synthetic acousto-optic holograms,” Opt. Lett. 16, 1274-1276 (1991).
[CrossRef] [PubMed]

J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
[CrossRef]

Tolpin, K. A.

V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).

Tsai, C. S.

C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993).
[CrossRef]

C. S. Tsai and A. Kar-Roy, “8×8 symmetrical non-blocking integrated acousto-optic space switch module on LiNbO3,” IEEE Photon. Technol. Lett. 4, 731-734 (1992).
[CrossRef]

C. S. Tsai and P. Le, “4×4 nonblocking integrated acousto-optic space switch,” Appl. Phys. Lett. 60, 431-433 (1992).
[CrossRef]

Turunen, J.

J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
[CrossRef]

Vainer, A. V.

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.

V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
[CrossRef]

Vanderlugt, A.

Verhas, I.

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

Wagner, K.

R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Walker, J. A.

Wang, Q.

Wang, W.

L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
[CrossRef]

Watanabe, A.

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Westerholm, J.

Weverka, R. T.

R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Wu, K.

R. R. McLeod, K. Wu, K. Wagner, and R. T. Weverka, “Acousto-optic photonic crossbar switch. Part I: design,” Appl. Opt. 35, 6331-6353 (1996).
[CrossRef] [PubMed]

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

Xiao, L.

L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
[CrossRef]

L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
[CrossRef]

Yamaguchi, M.

Yamazaki, H.

Yano, T.

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

Yao, J.

Zeng, Zh.

L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
[CrossRef]

Zhao, B.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Zou, Q.

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Yano, M. Kawabuichi, A. Fukumoto, and A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689-691 (1975).
[CrossRef]

C. S. Tsai and P. Le, “4×4 nonblocking integrated acousto-optic space switch,” Appl. Phys. Lett. 60, 431-433 (1992).
[CrossRef]

Chin. Phys. Lett.

L. Xiao, Y. Liu, W. Wang, and F. Geng, “Isolation of integrated optical acousto-optic switch,” Chin. Phys. Lett. 23, 645-648 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

C. S. Tsai and A. Kar-Roy, “8×8 symmetrical non-blocking integrated acousto-optic space switch module on LiNbO3,” IEEE Photon. Technol. Lett. 4, 731-734 (1992).
[CrossRef]

IEEE Trans. Sonics Ultrason.

D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977).
[CrossRef]

Integr. Comput. Aided Eng.

A. Barocsi, L. Jakab, I. Verhas, and P. Richter, “Two-dimensional acousto-optic light diffraction and its applications,” Integr. Comput. Aided Eng. 3, 108-116 (1996).

J. Appl. Phys.

J. Turunen, E. Tervonen, and A. T. Friberg, “Acousto-optic control and modulation of optical coherence by electronically synthesized holographic gratings,” J. Appl. Phys. 67, 49-59 (1990).
[CrossRef]

J. Lightwave Technol.

Japanese J. Appl. Phys. Part 1

C. S. Tsai and A. Kar-Roy, “Integrated acousto-optic space switch modules with applications to multiport optical switching and communications,” Japanese J. Appl. Phys. Part 1 32, 2362-2366 (1993).
[CrossRef]

Opt. Commun.

P. Maak, L. Jakab, A. Barocsi, and P. Richter, “Improved design method for acousto-optic light deflectors,” Opt. Commun. 172, 297-324 (1999).
[CrossRef]

Opt. Eng.

L. Xiao, Y. Liu, and Zh. Zeng, “Isolation of a polarization-independent acousto-optic switch,” Opt. Eng. 46, 034601 (2007).
[CrossRef]

J. Aboujeib, V. Quintard, A. Perennou, and J. L. Bihan, “Experimental study of losses and cross talk in a multitransducer acousto-optic switch,” Opt. Eng. 47, 035007 (2008).
[CrossRef]

A. Perennou, V. Quintard, Y. Mevel, and J. L. Bihan, “Intermodulation product effects on the working of a phased-array transducer acousto-optic switch,” Opt. Eng. 43, 1042-1050(2004).
[CrossRef]

W. E. Stephens, P. C. Huang, T. C. Banwell, L. A. Reith, and S. S. Cheng, “Demonstration of a photonic space switch utilizing acousto-optic elements,” Opt. Eng. 29, 183-190 (1990).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc. (Russia)

V. I. Balakshi, A. Sliwinski, and K. A. Tolpin, “Diffraction of light by multifrequency acoustic field under strong acousto-optic interaction,” Opt. Spectrosc. (Russia) 87, 1010-1016(1999).

Proc. SPIE

M. Stark, G. Esser, A. Lamott, and M. Geiger, “Laser-based microalignment for fabrication of highly precise 2D fiber collimator arrays,” Proc. SPIE 5339, 144-155 (2004).
[CrossRef]

Rev. Sci. Instrum.

H. Müller, S. Chiow, S. Herrmann, and S. Chu, “Nanosecond electro-optical switching with a repetition rate above 20 MHz,” Rev. Sci. Instrum. 78, 124702 (2007).
[CrossRef]

Sensors Actuators, A

A. Q. Liu, B. Zhao, F. Chollet, Q. Zou, A. Asundi, and H. Fujita, “Micro-opto-mechanical grating switches,” Sensors Actuators, A 86, 27-134 (2000).
[CrossRef]

Tech. Phys.

S. N. Antonov, A. V. Vainer, V. V. Proklov, and Yu. G. Rezvov, “Highly effective acoustooptic diffraction of light by multifrequency sound using a nonaxial deflector,” Tech. Phys. 53, 752-756 (2008), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 78, 79-83(2008).
[CrossRef]

S. N. Antonov, “Angular splitting of the Bragg diffraction order in an acoustooptical modulator due to a frequency-modulated acoustic wave,” Tech. Phys. 50, 513-516 (2005), translated from Zh. Tekhnicheskoj Fiziki (Russia) 75, 122-124 (2005).
[CrossRef]

S. N. Antonov and Yu. G. Rezvov, “Efficient multiple-beam Bragg acoustooptic diffraction with phase optimization of a multifrequency acoustic wave,” Tech. Phys. 52, 1053-1060 (2007), translated from Zhurnal Tekhnicheskoj Fiziki (Russia) 77, 93-100 (2007).
[CrossRef]

Other

V. V. Proklov, S. N. Antonov, Yu. G. Rezvov, and A. V. Vainer, “High-efficiency multibeam Bragg acoustooptic diffraction,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2006), pp. 248-251.

R. T. Weverka, K. Wagner, R. R. McLeod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing, N. J. Berg and J. H. Pellegrino, eds. (Dekker, 1996), pp 479-573.

A. Korpel, Acousto-Optics (Dekker, 1988).

V. V. Proklov, S. N. Antonov, A. V. Vainer, and Yu. G. Rezvov, “High efficiency multi-channel acousto-optic multiplexers on anisotropic light diffraction by multi-frequency sound,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2007), pp. 825-828.
[CrossRef]

ThorLabs catalog, http://www.thorlabs.com.

Sentronic booklet, http://www.sentronic.net.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Principal scheme of the AO fiber-optic switch multiplexer. See text for details.

Fig. 2
Fig. 2

Main ( k 1 ) and intermodulation ( k i 0 , k i 1 ) diffraction beams under multifrequency AO interaction.

Fig. 3
Fig. 3

Calculated maximum efficiencies in the case of optical beams with equal intensities.

Fig. 4
Fig. 4

Wave vector diagrams for isotropic (a) and anisotropic (b) AO Bragg diffractions.

Fig. 5
Fig. 5

Calculated total efficiency versus signal bandwidth for five equal beams (a) and a single beam (b). Interaction length L = 3 mm (dotted curve), 6 mm (solid curve), 12 mm (dashed curve).

Fig. 6
Fig. 6

Measured frequency responses.

Fig. 7
Fig. 7

Experimental setup. See text for details.

Fig. 8
Fig. 8

Interface of the tuning program.

Fig. 9
Fig. 9

Experimentally obtained angular spectrum of diffracted light intensity (a) with correct intersignal phasing, (b) without any phasing.

Fig. 10
Fig. 10

Scheme of the 2D AO fiber-optic channel multiplexer. See text for details.

Fig. 11
Fig. 11

2D multiplexing.

Fig. 12
Fig. 12

Multiplexing combination examples.

Fig. 13
Fig. 13

Number of channels N versus fiber matrix compactness parameter R / d .

Fig. 14
Fig. 14

AO block of the experimental prototype AOSM.

Fig. 15
Fig. 15

AOSM prototype.

Tables (2)

Tables Icon

Table 1 AOC Parameters

Tables Icon

Table 2 Comparison of Different Switch-Multiplexing Technologies

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( α ) = I 0 | V ( t ) sinc ( | V ( t ) | ) exp ( 2 π j α α 0 f 0 t ) d t | 2 .
I ( α ) = I 0 sinc 2 ( | V ( t ) | ) | V ( t ) exp ( 2 π j α α 0 f 0 t ) d t | 2 .
U ( t ) = Re [ n = 1 N a n exp ( 2 π j f 0 t j 2 π n T t + j φ n ) ] .
D = 1 T 0 T ( | V ( t ) | 2 / Y V 1 ) 2 d t ,
η a b = | Δ k ab | L , Δ k ab = k a + K k b ,

Metrics