Abstract

When an antireflection-coated normal-cut nonlinear crystal is used in an external cavity for the generation of high second-harmonic power, a small residual reflection at the crystal facets causes a round-trip loss and prevents the realization of a large fundamental enhancement. This problem is eliminated when the reflected beams at the crystal facets are subject to constructive interference. We demonstrate that the temperature tuning of a β-BaB2O4 crystal of at most 3K is sufficient to realize constructive interference at any wavelength. We achieve an enhancement factor of 125, and a second-harmonic power of 125mW is generated at 398nm from a fundamental power of 390mW.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
    [CrossRef]
  2. B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
    [CrossRef]
  3. J. D. Bhawalkar, Y. Mao, H. Po, A. K. Goyal, P. Gvrilovic, Y. Conturie, and S. Singh, “High-power 390 nm laser source based on efficient frequency doubling of a tapered diode laser in an external resonant cavity,” Opt. Lett. 24, 823-825(1999).
    [CrossRef]
  4. H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, “Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity,” Appl. Opt. 42, 1036-1039 (2003).
    [CrossRef] [PubMed]
  5. M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214-219 (1977).
    [CrossRef]
  6. K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
    [CrossRef]
  7. D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
    [CrossRef]
  8. S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
    [CrossRef]
  9. H. Kumagai, “Fine frequency tuning in sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual-wavelength enhancement,” Opt. Lett. 32, 62-64 (2007).
    [CrossRef]
  10. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  11. K. Sugiyama, J. Yoda, and T. Sakurai, “Generation of continuous-wave ultraviolet light by sum-frequency mixing of diode-laser and argon-ion-laser radiation in β-BaB2O4,” Opt. Lett. 16, 449-451 (1991).
    [CrossRef] [PubMed]
  12. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639(1968).
    [CrossRef]
  13. T. Freegarde and J. Coutts, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B 14, 2010-2016 (1997).
    [CrossRef]
  14. I. Shoji, H. Nakamura, K. Ohdaira, T. Kondo, and R. Ito, “Absolute measurement of second-order nonlinear-optical coefficients of β-BaB2O4 for visible to ultraviolet second-harmonic wavelengths,” J. Opt. Soc. Am. B 16, 620-624(1999).
    [CrossRef]
  15. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43-45 (2002).
    [CrossRef]

2007

2006

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

2003

2002

1999

1997

T. Freegarde and J. Coutts, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B 14, 2010-2016 (1997).
[CrossRef]

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

1991

1987

D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
[CrossRef]

1986

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

1981

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

1980

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

1977

M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214-219 (1977).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639(1968).
[CrossRef]

Asakawa, Y.

Beier, B.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Bhawalkar, J. D.

Boller, K. J.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639(1968).
[CrossRef]

Brieger, M.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Bubnova, R. S.

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

Büsener, H.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Conturie, Y.

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Coutts, J.

Davis, L.

D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
[CrossRef]

Dunn, M. H.

M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214-219 (1977).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
[CrossRef]

Fejer, M. M.

Ferguson, A. I.

M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214-219 (1977).
[CrossRef]

Filatov, S. K.

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

Freegarde, T.

Goyal, A. K.

Gvrilovic, P.

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Hese, A.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Ito, R.

Iwane, T.

Kato, K.

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639(1968).
[CrossRef]

Kondo, T.

Kumagai, H.

Kurz, J. R.

Mao, Y.

Midorikawa, K.

Moers, F. V.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Nakamura, H.

Nikolaeva, N. V.

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

Obara, M.

Ohdaira, K.

Parameswaran, K. R.

Po, H.

Polyakova, I. G.

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

Renn, A.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

Roussev, R. V.

Sakurai, T.

Scheidt, M.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Shoji, I.

Singh, S.

Sugiyama, K.

Velsko, S.

D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
[CrossRef]

Wallenstein, R.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Woll, D.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Yoda, J.

Appl. Opt.

Appl. Phys. Lett.

B. Beier, D. Woll, M. Scheidt, K. J. Boller, and R. Wallenstein, “Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB3O5 and β-BaB2O4,” Appl. Phys. Lett. 71, 315-317 (1997).
[CrossRef]

Glass Phys. Chem.

S. K. Filatov, N. V. Nikolaeva, R. S. Bubnova, and I. G. Polyakova, “Thermal expansion of β-BaB2O4 and BaB4O7 borates,” Glass Phys. Chem. 32, 471-478 (2006).
[CrossRef]

IEEE J. Quantum Electron.

K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

J. Appl. Phys.

D. Eimerl, L. Davis, and S. Velsko, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968-1983 (1987).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3639(1968).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. Brieger, H. Büsener, A. Hese, F. V. Moers, and A. Renn, “Enhancement of single frequency SGH in passive ring resonator,” Opt. Commun. 38, 423-426 (1981).
[CrossRef]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

M. H. Dunn and A. I. Ferguson, “Coma compensation in off-axis laser resonators,” Opt. Commun. 20, 214-219 (1977).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated enhancement factor A as a function of the loss factor V defined as V = 1 L , where L is the fraction of the round-trip loss. When the reflectivity of the input mirror R is high ( > 0.98 ), the enhancement factor is strongly affected by the round-trip loss. For example, for R = 0.990 , A decreases from 125 to 100 when L increases only by 0.002 from 0.008 to 0.010.

Fig. 2
Fig. 2

Experimental setup. ISR, isolator; ML, mode-matching lens ( f = 750 mm ); M3, M4, concave mirrors with curvature radius of 50 mm ; PZT, piezotransducer; PBS, polarizing beam splitter; and PD, photodiode. The PD is used to monitor the fundamental power inside the external cavity.

Fig. 3
Fig. 3

Dependence of SH power (solid circles) and fundamental power (open diamonds) on the fundamental wavelength. The dashed curve is a Fabry–Perot function fitted to fundamental power. The solid curve is the square of the Fabry–Perot function fitted to SH power.

Fig. 4
Fig. 4

Dependence of SH power (solid circles) and fundamental power (open diamonds) on temperature of BBO crystal. The dashed curve is a Fabry–Perot function fitted to the fundamental power. The solid curve is the square of the Fabry–Perot function fitted to the SH power. The decrease due to phase-mismatching expressed as the square of the sinc function is also included in the fitting.

Fig. 5
Fig. 5

SH power and corresponding power-conversion efficiency P 2 ω / P ω as a function of the fundamental power when the fundamental enhancement factor is maximized by temperature tuning, where P ω and P 2 ω are the fundamental and SH powers, respectively. The solid curve represents the calculated SH power assuming no depletion of the fundamental power by conversion to the SH power. The calculated parameters are given in the text. The highest SH power of 125 mW was achieved at a fundamental power of 390 mW .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A = 1 R ( 1 R V ) 2 ,
| Δ λ | = λ 2 2 n l ,
d ( n l ) d T Δ T = ( n d l d T + l d n d T ) Δ T = λ 4 ,
F = π ( R V ) 1 / 4 1 R V .
γ total = γ SHG γ mm 2 A 2 = γ mm 2 A 2 16 π 2 ϵ 0 c λ ω 3 d eff 2 l n 2 h ( B , ξ ) ,

Metrics