Abstract

We present a method to determine the speckle properties of front projection screens. Seven different screens are investigated in a backscattering geometry for 808nm light. The speckle contrast reduction that results from polarization scrambling and reduced temporal coherence is modeled for the case of volume scattering in the screens. For this purpose, the screen’s volume scattering path length distributions and depolarization characteristics are determined. This is done via a streak camera setup to measure the temporal broadening of ultrashort 50fs light pulses scattered in the screens. We show that it is essential to properly select a projection screen with large volume roughness in order to achieve low speckle contrast values for moderate illumination bandwidths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2006).
  2. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
    [CrossRef]
  3. D. J. Whitehouse, Handbook of Surface Metrology (Institute of Physics, 1994).
  4. M. A. Webster, K. J. Webb, A. M. Weiner, J. Xu, and H. Cao, “Temporal response of a random medium from speckle intensity frequency correlations,” J. Opt. Soc. Am. A 20, 2057-2070 (2003).
    [CrossRef]
  5. M. A. Webster, K. J. Webb, and A. M. Weiner, “Temporal response of a random medium from third-order laser speckle frequency correlations,” Phys. Rev. Lett. 88, 033901 (2002).
    [CrossRef] [PubMed]
  6. G. C. Mooradian and M. Geller, “Temporal and angular spreading of blue-green pulses in clouds,” Appl. Opt. 21, 1572-1577 (1982).
    [CrossRef] [PubMed]
  7. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331-2336 (1989).
    [CrossRef] [PubMed]
  8. G. Zaccanti, P. Bruscaglioni, A. Ismaelli, L. Carraresi, M. Gurioli, and Q. Wei, “Transmission of a pulsed thin light beam through thick turbid media: experimental results,” Appl. Opt. 31, 2141-2147 (1992).
    [CrossRef] [PubMed]
  9. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
    [CrossRef]
  10. C. A. Thompson, K. J. Webb, and A. M. Weiner, “Imaging in scattering media by use of laser speckle,” J. Opt. Soc. Am. A 14, 2269-2277 (1997).
    [CrossRef]
  11. J. Carlsson, P. Hellentin, L. Malmqvist, A. Persson, W. Persson, and C.-G. Wahlström, “Time-resolved studies of light propagation in paper,” Appl. Opt. 34, 1528-1535 (1995).
    [CrossRef] [PubMed]

2003

2002

M. A. Webster, K. J. Webb, and A. M. Weiner, “Temporal response of a random medium from third-order laser speckle frequency correlations,” Phys. Rev. Lett. 88, 033901 (2002).
[CrossRef] [PubMed]

1998

1997

1995

1992

1989

1982

Bruscaglioni, P.

Cao, H.

Carlsson, J.

Carraresi, L.

Chance, B.

Geller, M.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2006).

Gurioli, M.

Halldórsson, T.

Hellentin, P.

Ismaelli, A.

Malmqvist, L.

Mooradian, G. C.

Patterson, M. S.

Persson, A.

Persson, W.

Pétursson, P. R.

Thompson, C. A.

Trebino, R.

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
[CrossRef]

Tschudi, T.

Wahlström, C.-G.

Wang, L.

Webb, K. J.

Webster, M. A.

M. A. Webster, K. J. Webb, A. M. Weiner, J. Xu, and H. Cao, “Temporal response of a random medium from speckle intensity frequency correlations,” J. Opt. Soc. Am. A 20, 2057-2070 (2003).
[CrossRef]

M. A. Webster, K. J. Webb, and A. M. Weiner, “Temporal response of a random medium from third-order laser speckle frequency correlations,” Phys. Rev. Lett. 88, 033901 (2002).
[CrossRef] [PubMed]

Wei, Q.

Weiner, A. M.

Whitehouse, D. J.

D. J. Whitehouse, Handbook of Surface Metrology (Institute of Physics, 1994).

Wilson, B. C.

Xu, J.

Zaccanti, G.

Appl. Opt.

J. Opt. Soc. Am. A

Phys. Rev. Lett.

M. A. Webster, K. J. Webb, and A. M. Weiner, “Temporal response of a random medium from third-order laser speckle frequency correlations,” Phys. Rev. Lett. 88, 033901 (2002).
[CrossRef] [PubMed]

Other

D. J. Whitehouse, Handbook of Surface Metrology (Institute of Physics, 1994).

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
[CrossRef]

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a typical volume scattering path of a backscattered photon that was incident under normal direction. In case (a) it propagates mainly in air, and in case (b) it propagates in a screen material with refractive index n > 1 .

Fig. 2
Fig. 2

Schematic of the streak camera setup.

Fig. 3
Fig. 3

Plot of a typical measurement of unscattered Ti:Sa pulses and its approximation by a Gaussian fit.

Fig. 4
Fig. 4

Plot of a typical measurement of Ti:Sa pulses backscattered from the OP.DI.MA screen and its approximation by a Gaussian fit.

Fig. 5
Fig. 5

Plot of the modeled speckle contrast that results for illumination of the investigated screens with spatially fully coherent 808 nm light of different bandwidths.

Tables (3)

Tables Icon

Table 1 Determined Coefficients of Polarization P after Scattering in the Screens and Resulting Speckle Contrast Reduction Factors

Tables Icon

Table 2 Determined Standard Deviations of the Scattering Path Time Distributions p ( τ ) of the Investigated Screens

Tables Icon

Table 3 Measured and Expected Speckle Contrast Values for Illumination of the Screens with 20 nm Bandwidth Ti : Sa Pulses with 808 nm Mean Wavelength

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C = 1 + P 2 2 .
C = K G ^ ( Δ ν ) | M l ( Δ q z ) | 2 d Δ ν ,
K G ^ ( Δ ν ) = 2 π δ ν 2 exp ( 2 Δ ν 2 δ ν 2 ) ,
| M l ( Δ q z ) | 2 = | 0 p ( l ) e i Δ q z l d l | 2 .
C = [ 1 + 2 π 2 n 2 ( δ λ λ ¯ ) 2 ( σ v λ ¯ ) 2 ] 1 4 ,

Metrics