Abstract

The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005i, 1.3427+0.0028i, 1.3476+0.0034i, and 1.3496+0.0038i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5×105.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Barrera, “Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach,” J. Opt. Soc. Am. A 20, 296-311 (2003).
    [CrossRef]
  2. I. Niskanen and J. Raty, “Complex refractive index of turbid liquids,” Opt. Lett. 32, 862-864 (2007).
    [CrossRef] [PubMed]
  3. G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near critical angle,” Meas. Sci. Technol. 6, 214-221 (1995).
    [CrossRef]
  4. H. F. Ding, J. Q. Lu, J. M. Kenneth, and H. Xin-Hua, “Determination of refractive indices of porcine skin tissues and Intralipid at eight wavelengths between 325 and 1557 nm,” J. Opt. Soc. Am. A 22, 1151-1157 (2005).
    [CrossRef]
  5. A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
    [CrossRef] [PubMed]
  6. J. S. Jarkko and K. E. Peiponen, “Simulation on wavelength-dependent complex refractive index of liquids obtained by phase retrieval from reflectance dip due to surface plasmon resonance,” Appl. Spectrosc. 57, 288-292 (2003).
    [CrossRef]
  7. M. V. Erik, J. S. Jarkko, and K. E. Peiponen, “Method for extracting the complex dielectric function of nanospheres in a water matrix from surface-plasmon resonance data,” J. Opt. Soc. Am. B 22, 1173-1178 (2005).
    [CrossRef]
  8. J. H. W. G. den Boer, G. M. W. Kroesen, and F. J. de Hoog, “Measurement of the complex refractive index of liquids in the infrared using spectroscopic attenuated total reflection ellipsometry: correction for depolarization by scattering,” Appl. Opt. 34, 5708-5714 (1995).
    [CrossRef] [PubMed]
  9. R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
    [CrossRef]
  10. A. K. Alexandre, D. G. Paul, and A. S. Hans, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314-3320 (2000).
    [CrossRef]
  11. T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46, 1575-1582 (2007).
    [CrossRef] [PubMed]
  12. M. Born, Principles of Optics (Cambridge U. Press, 2001).
  13. P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
    [CrossRef]
  14. R. Raraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators B 107, 952-956 (2005).
    [CrossRef]

2007 (2)

2005 (3)

2003 (2)

2001 (1)

A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

1995 (2)

1993 (1)

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Alexandre, A. K.

Barrera, R. G.

Beloglazov, A. A.

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

Born, M.

M. Born, Principles of Optics (Cambridge U. Press, 2001).

Burgess, L. W.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

de Hoog, F. J.

den Boer, J. H. W. G.

Ding, H. F.

Erik, M. V.

Hans, A. S.

Iwata, T.

Jaaskelainen, A. J.

A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
[CrossRef] [PubMed]

Jarkko, J. S.

Jorgenson, R. C.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Jung, C.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Kajikawa, K.

R. Raraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

Kenneth, J. M.

Kroesen, G. M. W.

Ksenevich, T. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

Lu, J. Q.

Maeda, S.

Meeten, G. H.

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near critical angle,” Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

Nikitin, P. I.

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

Niskanen, I.

North, A. N.

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near critical angle,” Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

Paul, D. G.

Peiponen, K. E.

Peiponen, K.-E.

A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
[CrossRef] [PubMed]

Raraoka, R.

R. Raraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

Raty, J.

Raty, J. A.

A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
[CrossRef] [PubMed]

Valeiko, V. E.

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

Xin-Hua, H.

Yee, S. S.

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (1)

J. Dairy Sci. (1)

A. J. Jaaskelainen, K.-E. Peiponen, and J. A. Raty, “On reflectometric measurement of a refractive index of milk,” J. Dairy Sci. 84, 38-43 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

G. H. Meeten and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near critical angle,” Meas. Sci. Technol. 6, 214-221 (1995).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators B (3)

R. C. Jorgenson, C. Jung, S. S. Yee, and L. W. Burgess, “Multiwavelength surface plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721-722 (1993).
[CrossRef]

P. I. Nikitin, A. A. Beloglazov, V. E. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43-50 (1999).
[CrossRef]

R. Raraoka and K. Kajikawa, “Phase detection of surface plasmon resonance using rotating analyzer method,” Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

Other (1)

M. Born, Principles of Optics (Cambridge U. Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the Kretschmann configuration.

Fig. 2
Fig. 2

SPR phase difference versus incident angle for samples with (a) the same n but different k and (b) the same k but different n.

Fig. 3
Fig. 3

Schematic of the experimental setup. L is a semiconductor laser of 4 mW at 650 nm , C is the collimate system, P1 and P2 are polarizers, RS is a rotate stage, P3 is an analyzer, and D is a photodiode.

Fig. 4
Fig. 4

Measured (δ) and calculated phase difference versus incident angle for deionized water.

Fig. 5
Fig. 5

Measured (δ) and calculated phase difference versus incident angle for ethanol.

Fig. 6
Fig. 6

Measured (δ) and calculated phase difference versus incident angle for Intralipid-5%, 10%, 15%, and 20%.

Fig. 7
Fig. 7

Flow chart of the simulation.

Fig. 8
Fig. 8

Error histogram of (a) the real part and (b) the imaginary part for Intralipid-5%.

Tables (2)

Tables Icon

Table 1 Measured Complex Refractive Indices of Samples at 650 nm

Tables Icon

Table 2 RMS Error of the Complex Refractive Indices of Samples

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ = arg ( r p / r s ) ,
{ r j ( θ 1 ) = r j 12 + r j 23 exp ( i 2 ϕ ) 1 + r j 12 r j 23 exp ( i 2 ϕ ) j = p , s r p k , k + 1 = n k + 1 cos θ k n k cos θ k + 1 n k + 1 cos θ k + n k cos θ k + 1 r s k , k + 1 = n k cos θ k n k + 1 cos θ k + 1 n k cos θ k + n k + 1 cos θ k + 1 ( k = 1 , 2 ) ,
min n 3 j = 1 j = N ( δ j ( θ 1 j ) δ ˜ j ( θ 1 j , n 3 ) ) 2 ,
R 2 = 1 j = 1 j = N ( δ j δ ˜ j ) 2 j = 1 j = N ( δ j δ ¯ ) 2 ,
I out ( A ) = γ ( 1 + α cos 2 A + β sin 2 A ) .
δ = { cos 1 [ β / ( 1 α 2 ) 1 / 2 ] δ [ 0 , π ] 2 π cos 1 [ β / ( 1 α 2 ) 1 / 2 ] δ ( π , 2 π ) .
f ( x ) = 1 σ 2 π e x 2 2 σ 2 ,

Metrics