Abstract

The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log–log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2mg/m3.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 639-663 (1988).
    [CrossRef]
  2. M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
    [CrossRef]
  3. M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
    [CrossRef]
  4. D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929-2945(2001).
    [CrossRef]
  5. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
    [CrossRef]
  6. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
    [CrossRef]
  7. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
    [CrossRef]
  8. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
    [CrossRef]
  9. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
    [CrossRef]
  10. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
    [CrossRef]
  11. M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45, 9210-9220 (2006).
    [CrossRef] [PubMed]
  12. M. Chami, E. B. Shybanov, G. Khomenko, M. Lee, O. V. Martynov, and G. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
    [CrossRef] [PubMed]
  13. G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
    [CrossRef]
  14. T. Y. Churilova and G. P. Berseneva, “Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the black sea (July--August 2002),” Phys. Oceanogr. 14, 221-233 (2004), in Russian.
  15. G. S. Fargion and J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation,” NASA Tech. Memo. 2000-209966 (Goddard Space Flight Center, Greenbelt, MD, 2000).
  16. O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).
  17. C. F. Gibbs, “Chlorophyll b interference in the fluorometric determination of chlorophyll a and phaeopigments,” Aust. J. Mar. Freshwater Res. 30, 597-606 (1979).
    [CrossRef]
  18. G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-57 (2001), in Russian.
  19. T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).
  20. C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. (Engl. Transl.) 7, 207-217 (1962).
    [CrossRef]
  21. M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).
  22. H. M. Sosik and R. E. Green, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455-9472(2001).
    [CrossRef]
  23. J. R. Nelson and S. Guarda, “Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States,” J. Geophys. Res. 100, 8715-8732 (1995).
    [CrossRef]
  24. J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
    [CrossRef]
  25. H. M. Sosik and B. G. Mitchell, “Light absorption by phytoplankton, photosynthetic pigments, and detritus in the California current system,” Deep-Sea Res. 42, 1717-1748(1995).
    [CrossRef]
  26. G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-58 (2001), in Russian.
  27. T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.
  28. A. K. Bera and C. M. Jarque, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett. 6, 255-259 (1980).
    [CrossRef]
  29. H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 399-402 (1967).
    [CrossRef]
  30. A. N. Kolmogorov, “Confidence limits for an unknown distribution function,” Ann. Math. Stat. 12(4), 461-463 (1941).
    [CrossRef]
  31. D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 2nd ed. (Elsevier Academic, 2006).
  32. A. C. Davison and V. D. Hinkley, Bootstrap Methods and Their Application (Cambridge U. Press, 1997).
  33. W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83, 596-610 (1988).
    [CrossRef]
  34. S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
    [CrossRef]
  35. S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
    [CrossRef]
  36. T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).
  37. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375-1393(1981).
    [CrossRef]
  38. J. H. Mathews and K. K. Fink, Numerical Methods Using MATLAB (Prentice Hall, 2004).
  39. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
    [CrossRef]
  40. C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
    [CrossRef]
  41. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
    [CrossRef]
  42. Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
    [CrossRef]
  43. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
    [CrossRef]
  44. L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
    [CrossRef]

2008 (1)

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

2007 (2)

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

2006 (3)

2005 (1)

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

2004 (5)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

T. Y. Churilova and G. P. Berseneva, “Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the black sea (July--August 2002),” Phys. Oceanogr. 14, 221-233 (2004), in Russian.

T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

2003 (1)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

2001 (5)

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-58 (2001), in Russian.

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-57 (2001), in Russian.

H. M. Sosik and R. E. Green, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455-9472(2001).
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

2000 (1)

C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
[CrossRef]

1999 (1)

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

1996 (2)

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

1995 (4)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

J. R. Nelson and S. Guarda, “Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States,” J. Geophys. Res. 100, 8715-8732 (1995).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

H. M. Sosik and B. G. Mitchell, “Light absorption by phytoplankton, photosynthetic pigments, and detritus in the California current system,” Deep-Sea Res. 42, 1717-1748(1995).
[CrossRef]

1993 (1)

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

1988 (2)

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 639-663 (1988).
[CrossRef]

W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83, 596-610 (1988).
[CrossRef]

1985 (1)

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

1981 (2)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375-1393(1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

1980 (1)

A. K. Bera and C. M. Jarque, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett. 6, 255-259 (1980).
[CrossRef]

1979 (1)

C. F. Gibbs, “Chlorophyll b interference in the fluorometric determination of chlorophyll a and phaeopigments,” Aust. J. Mar. Freshwater Res. 30, 597-606 (1979).
[CrossRef]

1977 (1)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

1967 (1)

H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 399-402 (1967).
[CrossRef]

1965 (1)

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

1962 (1)

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. (Engl. Transl.) 7, 207-217 (1962).
[CrossRef]

1941 (1)

A. N. Kolmogorov, “Confidence limits for an unknown distribution function,” Ann. Math. Stat. 12(4), 461-463 (1941).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

Babin, M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

Bera, A. K.

A. K. Bera and C. M. Jarque, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett. 6, 255-259 (1980).
[CrossRef]

Berseneva, G.

T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-58 (2001), in Russian.

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-57 (2001), in Russian.

Berseneva, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

Berseneva, G. P.

T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

T. Y. Churilova and G. P. Berseneva, “Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the black sea (July--August 2002),” Phys. Oceanogr. 14, 221-233 (2004), in Russian.

Bersevena, G. A.

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Boss, E.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375-1393(1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Bryanzeva, Y.

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

Chami, M.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
[CrossRef]

M. Chami, E. B. Shybanov, G. Khomenko, M. Lee, O. V. Martynov, and G. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef] [PubMed]

M. Chami, D. McKee, E. Leymarie, and G. Khomenko, “Influence of the angular shape of the volume scattering function and multiple scattering on remote sensing reflectance,” Appl. Opt. 45, 9210-9220 (2006).
[CrossRef] [PubMed]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Churilova, T.

T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-58 (2001), in Russian.

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-57 (2001), in Russian.

Churilova, T. V.

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Churilova, T. Y.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

T. Y. Churilova and G. P. Berseneva, “Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the black sea (July--August 2002),” Phys. Oceanogr. 14, 221-233 (2004), in Russian.

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Cleveland, J. S.

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

Cleveland, W. S.

W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83, 596-610 (1988).
[CrossRef]

Condal, A.

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

Davison, A. C.

A. C. Davison and V. D. Hinkley, Bootstrap Methods and Their Application (Cambridge U. Press, 1997).

Devlin, S. J.

W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83, 596-610 (1988).
[CrossRef]

Donaghay, P. L.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Falkowski, P. G.

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

Fargion, G. S.

G. S. Fargion and J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation,” NASA Tech. Memo. 2000-209966 (Goddard Space Flight Center, Greenbelt, MD, 2000).

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

Fink, K. K.

J. H. Mathews and K. K. Fink, Numerical Methods Using MATLAB (Prentice Hall, 2004).

Georgieva, L.

T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

Georgieva, L. V.

T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

Gibbs, C. F.

C. F. Gibbs, “Chlorophyll b interference in the fluorometric determination of chlorophyll a and phaeopigments,” Aust. J. Mar. Freshwater Res. 30, 597-606 (1979).
[CrossRef]

Gilpin, L.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

Green, R. E.

H. M. Sosik and R. E. Green, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455-9472(2001).
[CrossRef]

Guarda, S.

J. R. Nelson and S. Guarda, “Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States,” J. Geophys. Res. 100, 8715-8732 (1995).
[CrossRef]

Harrison, W. G.

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Helms, J. R.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Hinkley, V. D.

A. C. Davison and V. D. Hinkley, Bootstrap Methods and Their Application (Cambridge U. Press, 1997).

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

Holmes, R. W.

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

Holm-Hansen, O.

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

Ichimura, S.

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

Irwin, B.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Jarque, C. M.

A. K. Bera and C. M. Jarque, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett. 6, 255-259 (1980).
[CrossRef]

Kaas, H.

C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
[CrossRef]

Khomenko, G.

Khomenko, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Kieber, D. J.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Kiefer, D. A.

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 639-663 (1988).
[CrossRef]

Kishino, M.

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

Kobler, Z.

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

Kolmogorov, A. N.

A. N. Kolmogorov, “Confidence limits for an unknown distribution function,” Ann. Math. Stat. 12(4), 461-463 (1941).
[CrossRef]

Korotaev, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
[CrossRef]

M. Chami, E. B. Shybanov, G. Khomenko, M. Lee, O. V. Martynov, and G. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef] [PubMed]

Korotaev, G. K.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Kraay, G. W.

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Kuklin, A. K.

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Kuznetsov, A. S.

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Lee, M.

Lee, M. E.-G.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

Lee, M. E-B.

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Legendre, L.

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

Leymarie, E.

Lilliefors, H.

H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 399-402 (1967).
[CrossRef]

Lorenzen, C. J.

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

Maass, H.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

Markager, S.

C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
[CrossRef]

Marken, E.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
[CrossRef]

Martineau, C.

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Martynov, O. V.

M. Chami, E. B. Shybanov, G. Khomenko, M. Lee, O. V. Martynov, and G. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef] [PubMed]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Mathews, J. H.

J. H. Mathews and K. K. Fink, Numerical Methods Using MATLAB (Prentice Hall, 2004).

McKee, D.

Minor, E. C.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Mitchell, B. G.

H. M. Sosik and B. G. Mitchell, “Light absorption by phytoplankton, photosynthetic pigments, and detritus in the California current system,” Deep-Sea Res. 42, 1717-1748(1995).
[CrossRef]

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 639-663 (1988).
[CrossRef]

Mopper, K.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Morel, A.

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375-1393(1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

Mueller, J. L.

G. S. Fargion and J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation,” NASA Tech. Memo. 2000-209966 (Goddard Space Flight Center, Greenbelt, MD, 2000).

Nelson, J. R.

J. R. Nelson and S. Guarda, “Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States,” J. Geophys. Res. 100, 8715-8732 (1995).
[CrossRef]

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

Okami, N.

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

Osburn, C. L.

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Platt, T.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

Qin, B.

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

Retamal, L.

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Ritchie, J. D.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Savidge, G.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

Shybanov, E. B.

M. Chami, E. B. Shybanov, G. Khomenko, M. Lee, O. V. Martynov, and G. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605-3619 (2006).
[CrossRef] [PubMed]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

Sosik, H. M.

H. M. Sosik and R. E. Green, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455-9472(2001).
[CrossRef]

H. M. Sosik and B. G. Mitchell, “Light absorption by phytoplankton, photosynthetic pigments, and detritus in the California current system,” Deep-Sea Res. 42, 1717-1748(1995).
[CrossRef]

Stamnes, J. J.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
[CrossRef]

Stedmon, C. A.

C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
[CrossRef]

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

D. Stramski, A. Bricaud, and A. Morel, “Modeling the inherent optical properties of the ocean based on the detailed composition of planktonic community,” Appl. Opt. 40, 2929-2945(2001).
[CrossRef]

Strickland, J. D. H.

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

Stuart, V.

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Stubbins, A.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

Sullivan, J. M.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Takahashi, N.

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

Therriault, J. C.

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Veldhuis, M. J. W.

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Vincent, W. F.

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Wilks, D. S.

D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 2nd ed. (Elsevier Academic, 2006).

Yang, L.

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

Yentsch, C. S.

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. (Engl. Transl.) 7, 207-217 (1962).
[CrossRef]

Zhang, L.

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

Zhang, Y.

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

Zhu, G.

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

Ann. Math. Stat. (1)

A. N. Kolmogorov, “Confidence limits for an unknown distribution function,” Ann. Math. Stat. 12(4), 461-463 (1941).
[CrossRef]

Appl. Opt. (3)

Aust. J. Mar. Freshwater Res. (1)

C. F. Gibbs, “Chlorophyll b interference in the fluorometric determination of chlorophyll a and phaeopigments,” Aust. J. Mar. Freshwater Res. 30, 597-606 (1979).
[CrossRef]

Bull. Mar. Sci. (1)

M. Kishino, N. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634-642 (1985).

Deep-Sea Res. (4)

H. M. Sosik and B. G. Mitchell, “Light absorption by phytoplankton, photosynthetic pigments, and detritus in the California current system,” Deep-Sea Res. 42, 1717-1748(1995).
[CrossRef]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28, 1375-1393(1981).
[CrossRef]

B. G. Mitchell and D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light limited phytoplankton,” Deep-Sea Res. 35, 639-663 (1988).
[CrossRef]

M. Babin, A. Morel, P. G. Falkowski, H. Claustre, A. Bricaud, and Z. Kobler, “Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic systems,” Deep-Sea Res. 43, 1241-1272 (1996).
[CrossRef]

Deep-Sea Res. II (1)

S. Sathyendranath, V. Stuart, B. Irwin, H. Maass, G. Savidge, L. Gilpin, and T. Platt, “Seasonal variations in bio-optical properties of phytoplankton in the Arabian Sea,” Deep-Sea Res. II 46, 633-653 (1999).
[CrossRef]

Econ. Lett. (1)

A. K. Bera and C. M. Jarque, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Econ. Lett. 6, 255-259 (1980).
[CrossRef]

Estuar. Coast. Shelf Sci. (2)

C. A. Stedmon, S. Markager, and H. Kaas, “Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters,” Estuar. Coast. Shelf Sci. 51, 267-278 (2000).
[CrossRef]

L. Retamal, W. F. Vincent, C. Martineau, and C. L. Osburn, “Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic,” Estuar. Coast. Shelf Sci. 72, 261-272 (2007).
[CrossRef]

Hydrobiologia (1)

Y. Zhang, B. Qin, G. Zhu, L. Zhang, and L. Yang, “Chromophoric dissolved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake,” Hydrobiologia 581, 43-52(2007).
[CrossRef]

J. Am. Stat. Assoc. (2)

W. S. Cleveland and S. J. Devlin, “Locally-weighted regression: an approach to regression analysis by local fitting,” J. Am. Stat. Assoc. 83, 596-610 (1988).
[CrossRef]

H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown,” J. Am. Stat. Assoc. 62, 399-402 (1967).
[CrossRef]

J. Cons. Cons. Int. Explor. Mer (1)

O. Holm-Hansen, C. J. Lorenzen, R. W. Holmes, and J. D. H. Strickland, “Fluorometric determination of chlorophyll,” J. Cons. Cons. Int. Explor. Mer 30, 3-15 (1965).

J. Geophys. Res. (8)

H. M. Sosik and R. E. Green, “Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring,” J. Geophys. Res. 106, 9455-9472(2001).
[CrossRef]

J. R. Nelson and S. Guarda, “Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States,” J. Geophys. Res. 100, 8715-8732 (1995).
[CrossRef]

J. S. Cleveland, “Regional models for phytoplankton absorption as a function of chlorophyll a concentration,” J. Geophys. Res. 100, 13333-13344 (1995).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033-31044 (1998).
[CrossRef]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003), doi:10.1029/2001JC000882.
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E.-G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020 (2005), doi:10.1029/2005JC003008.
[CrossRef]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013 (2006), doi:10.1029/2005JC003230.
[CrossRef]

Limnol. Oceanogr. (5)

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. (Engl. Transl.) 7, 207-217 (1962).
[CrossRef]

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53, 955-969 (2008).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

M. Babin, J. C. Therriault, L. Legendre, and A. Condal, “Variations in the specific absorption coefficient for natural phytoplankton assemblages: impact on estimates of primary production,” Limnol. Oceanogr. 38, 154-177 (1993).
[CrossRef]

Mar. Chem. (1)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

S. Sathyendranath, T. Platt, V. Stuart, B. Irwin, M. J. W. Veldhuis, G. W. Kraay, and W. G. Harrison, “Some bio-optical characteristics of phytoplankton in the NW Indian Ocean,” Mar. Ecol. Prog. Ser. 132, 299-311 (1996).
[CrossRef]

Marine Hydrophys. J. (3)

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-58 (2001), in Russian.

T. Churilova, G. Berseneva, L. Georgieva, and Y. Bryanzeva, “Bio-optical characteristics of phytoplankton in winter-spring “bloom” of the Black Sea,” Marine Hydrophys. J. 5, 28-40 (2001), in Russian.

G. Berseneva and T. Churilova, “Chlorophyll concentration and phytoplankton optical characteristics in shelf waters of the Black Sea near the Crimea,” Marine Hydrophys. J. 2, 44-57 (2001), in Russian.

Oceanology (2)

T. Y. Churilova, G. P. Berseneva, and L. V. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

T. Churilova, G. Berseneva, and L. Georgieva, “Variability in bio-optical characteristics of phytoplankton in the Black Sea,” Oceanology 44, 192-204 (2004).

Phys. Oceanogr. (2)

G. K. Korotaev, G. A. Khomenko, M. Chami, G. A. Bersevena, O. V. Martynov, M. E-B. Lee, E. B. Shybanov, T. V. Churilova, A. S. Kuznetsov, and A. K. Kuklin, “International subsatellite experiment on the oceanographic platform,” Phys. Oceanogr. 14, 150-160 (2004).
[CrossRef]

T. Y. Churilova and G. P. Berseneva, “Absorption of light by phytoplankton, detritus, and dissolved organic substances in the coastal region of the black sea (July--August 2002),” Phys. Oceanogr. 14, 221-233 (2004), in Russian.

Other (4)

G. S. Fargion and J. L. Mueller, “Ocean optics protocols for satellite ocean color sensor validation,” NASA Tech. Memo. 2000-209966 (Goddard Space Flight Center, Greenbelt, MD, 2000).

D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 2nd ed. (Elsevier Academic, 2006).

A. C. Davison and V. D. Hinkley, Bootstrap Methods and Their Application (Cambridge U. Press, 1997).

J. H. Mathews and K. K. Fink, Numerical Methods Using MATLAB (Prentice Hall, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relative contribution of phytoplankton, NAPs, and CDOM absorption to the total absorption for (a) 2 August, (b) 3 August, (c) 10 August, and (d) 14 August 2002. The area between the x axis and the first lower curve represents the contribution of phytoplankton to the total absorption. The area between the lower and the upper curves represents the contribution of NAPs. The area above the upper curve represents the contribution of CDOM.

Fig. 2
Fig. 2

Log–log scatterplot of the phytoplankton absorption coefficients at 440 nm versus Tchla. The linear regression line is presented as a dashed curve, and the log–log regression is plotted using the solid line.

Fig. 3
Fig. 3

Spectral values of the numerical coefficients (a)  A ph ( λ ) and (b)  E ph ( λ ) defining the parameterization of light absorption by phytoplankton as a function of Tchla. (c), (d) Similar to (a) and (b), except the modified local regression smoothing was used to remove the spurious high-frequency variability. Thick black lines are used for our fitting, thick gray lines represent the results obtained by Bricaud et al. [7], and dashed black lines represent 95% confidence intervals.

Fig. 4
Fig. 4

Tests of normal distribution for ln a ph ( λ ) . The upper bar represents the results of the Jarque–Bera test, the middle bar represents the Lilliefors test, and the lower bar corresponds to the hybrid test. The significance level is 0.05.

Fig. 5
Fig. 5

Spectral distribution of the mean and random errors (the random error is defined as the standard deviation of the error) of the absorption parameterization of a ph ( λ ) .

Fig. 6
Fig. 6

Variations of the spectral absorption coefficient of phytoplankton for a fixed value of Tchla, namely, 0.65 mg m 3 . In (a), the thick gray curve represents the parameterization of phytoplankton absorption coefficient proposed by Bricaud et al. [7], and the thick black curve is the parameterization obtained based on our data set. The thin gray curves (five in total) are spectral absorption coefficients measured for different waters at the fixed chlorophyll concentration value of 0.65 mg / m 3 . The correlation coefficients between these five curves are represented in (b).

Fig. 7
Fig. 7

Examples of the exponential fit of the NAP spectral absorption coefficient using different methods for (a) a case representing the fit for which the error is close to its typical value (sample collected on 28 July 2002, depth 8 m ) and (b) a case corresponding to the greatest error made by the NLSM fitting (sample collected on 14 August 2002, depth 16 m ).

Fig. 8
Fig. 8

RMSE of DLM (solid gray curve) and NLSM (solid black curve) for all the measurements (a) when the fitting is carried out in the spectral region from 380 to 730 nm , excluding the intervals 400–480 and 620 710 nm , and (b) when the fitting is performed using the entire spectral region from 350 to 700 nm .

Fig. 9
Fig. 9

Histograms of the exponential slope parameter S NAP for the parameterization of the NAP absorption coefficient. The fitting is performed in the spectral region from 380 to 730 nm , excluding the intervals 400–480 and 620 710 nm using two different methods: (a) DLM and (b) NLSM. Black curves show the probability density functions of the normal distribution fitted to the corresponding data and scaled to the histograms.

Fig. 10
Fig. 10

Scatterplots of the slope parameter S NAP estimated by the DLM (squares) and by the NLSM (stars), with respect to the NAP absorption coefficient at the reference wavelength 443 nm . Black solid and dashed lines show the corresponding mean values of S NAP .

Fig. 11
Fig. 11

Spectral values of the numerical coefficients (a)  A p ( λ ) and (b)  E p ( λ ) used in the parameterization of the total particulate absorption coefficient as a function of Tchla. Thick black lines represent the results of the current study, thick gray lines represent results obtained in the Bricaud et al. study [7], and thin gray lines represent the confidence intervals at 95%.

Fig. 12
Fig. 12

Exponential fitting of the CDOM absorption coefficient using the NLSM. The gray curves represent the measurements of the CDOM absorption coefficient obtained on 3 August 2002 (surface), the dashed curves show the proposed fitting calculated over the spectral region from 350 500 nm , the thick and thin black solid curves show the a CDOM parameterization proposed by Babin et al. [8] with uncertainty intervals.

Tables (1)

Tables Icon

Table 1 Numerical Values of the Coefficients Used for the Parameterizations of Phytoplankton and Particulate Absorption Coefficients a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a CDOM ( λ ) = ( OD s ( λ ) OD b s ( λ ) ) · ln 10 ,
a ph ( λ ) = A ph ( λ ) Chl E ph ( λ ) .
A ph ( λ ) = exp ( ln a ph ( λ ) ¯ E ph ( λ ) ln Chl ¯ ) , E ph ( λ ) = ( ln a ph ( λ ) ln a ph ( λ ) ¯ ) ( ln Chl ln Chl ¯ ) ¯ ( ln Chl ln Chl ¯ ) 2 ¯ ,
a NAP ( λ ) = a ˜ NAP ( λ r ) e ( S NAP ( λ λ r ) ) ,
a NAP ( λ ) = a NAP ( 443 ) e ( 0.0104 ± 0.0024 ) ( λ 443 ) .
a CDOM ( λ ) = a ˜ CDOM ( λ r ) e ( S CDOM ( λ λ r ) ) ,
a CDOM ( λ ) = a CDOM ( 443 ) e 0.0179 ( λ 443 ) .

Metrics