Abstract

A comprehensive optical model for dual wavelength LEDs is developed using optical ray tracing programs. Optical dispersion of GaN, InGaN, and AlGaN is also included in this numerical model. The light extraction efficiency of LEDs can be calculated based on LED structure and material properties. Moreover, a LED device structure can be optimized to improve the light extraction efficiency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
    [CrossRef]
  2. I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
    [CrossRef]
  3. Dong-Xue Wang, I. T. Ferguson, and J. A. Buck, “Optical design and simulation for dual-wavelength LEDs in solid state lighting,” presented at the OSA Conference on Lasers and Electro-Optics, Long Beach, California, May 2006, paper CTuE5
  4. A. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley, 1992).
    [CrossRef]
  5. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
    [CrossRef]
  6. J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulation (Academic, 2003).
  7. T. Peng and J. Piprek, “Refractive index of AlGaNInN alloys,” Electron. Lett. 32, 2285-2286 (1996).
    [CrossRef]
  8. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
    [CrossRef] [PubMed]
  9. K. Brennan, The Physics of Semiconductors (Cambridge University Press, 1999).
  10. M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
    [CrossRef]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
    [CrossRef]
  12. D.-X. Wang, I. Ferguson, and J. Buck, “GaN based distributed Bragg reflector for high-brightness LED and solid state lighting,” Appl. Opt. 46, 4763-4767 (2007).
    [CrossRef] [PubMed]

2007

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

D.-X. Wang, I. Ferguson, and J. Buck, “GaN based distributed Bragg reflector for high-brightness LED and solid state lighting,” Appl. Opt. 46, 4763-4767 (2007).
[CrossRef] [PubMed]

2002

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

2001

I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
[CrossRef]

1998

M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

1997

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

1996

T. Peng and J. Piprek, “Refractive index of AlGaNInN alloys,” Electron. Lett. 32, 2285-2286 (1996).
[CrossRef]

Adachi, A.

A. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley, 1992).
[CrossRef]

Aloni, S.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

Ambacher, O.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Angerer, H.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Bhat, J.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Brennan, K.

K. Brennan, The Physics of Semiconductors (Cambridge University Press, 1999).

Brunner, D.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Buck, J.

Buck, J. A.

Dong-Xue Wang, I. T. Ferguson, and J. A. Buck, “Optical design and simulation for dual-wavelength LEDs in solid state lighting,” presented at the OSA Conference on Lasers and Electro-Optics, Long Beach, California, May 2006, paper CTuE5

Bustarret, E.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Collins, D.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Dimitrov, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Djurisic, A.

M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
[CrossRef]

Ferguson, I.

Ferguson, I. T.

Dong-Xue Wang, I. T. Ferguson, and J. A. Buck, “Optical design and simulation for dual-wavelength LEDs in solid state lighting,” presented at the OSA Conference on Lasers and Electro-Optics, Long Beach, California, May 2006, paper CTuE5

Fletcher, R.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Freudenberg, F.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Holcomb, M.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Hopler, R.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

Leung, M.

M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
[CrossRef]

Li, E.

M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
[CrossRef]

Ludowise, M.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Makarona, E.

I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
[CrossRef]

Martin, P.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Nurmikko, A.

I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
[CrossRef]

Ozden, I.

I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
[CrossRef]

Peng, T.

T. Peng and J. Piprek, “Refractive index of AlGaNInN alloys,” Electron. Lett. 32, 2285-2286 (1996).
[CrossRef]

Piprek, J.

T. Peng and J. Piprek, “Refractive index of AlGaNInN alloys,” Electron. Lett. 32, 2285-2286 (1996).
[CrossRef]

J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulation (Academic, 2003).

Rudaz, S.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Streigerwald, D.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

Stutzmann, M.

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Ulrich, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

Wang, D.-X.

Wang, Dong-Xue

Dong-Xue Wang, I. T. Ferguson, and J. A. Buck, “Optical design and simulation for dual-wavelength LEDs in solid state lighting,” presented at the OSA Conference on Lasers and Electro-Optics, Long Beach, California, May 2006, paper CTuE5

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Yang, P.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

I. Ozden, E. Makarona, and A. Nurmikko, “A dual-wavelength indium gallium nitride quantum well light emitting diode,” Appl. Phys. Lett. 79, 2532-2534 (2001).
[CrossRef]

Electron. Lett.

T. Peng and J. Piprek, “Refractive index of AlGaNInN alloys,” Electron. Lett. 32, 2285-2286 (1996).
[CrossRef]

IEEE J. Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I: Basic concept and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Streigerwald, J. Bhat, D. Collins, R. Fletcher, M. Holcomb, M. Ludowise, P. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[CrossRef]

J. Appl. Phys.

M. Leung, A. Djurisic, and E. Li, “Refractive index of InGaN/GaN quantum well,” J. Appl. Phys. 84, 6312-6317 (1998).
[CrossRef]

D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys. 82, 5090-5096 (1997).
[CrossRef]

Nat. Mater.

T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “ Complete composition tenability of InGaN nanowares using a combinatorial approach,” Nat. Mater. 6, 951-956 (2007).
[CrossRef] [PubMed]

Other

K. Brennan, The Physics of Semiconductors (Cambridge University Press, 1999).

J. Piprek, Semiconductor Optoelectronic Devices, Introduction to Physics and Simulation (Academic, 2003).

Dong-Xue Wang, I. T. Ferguson, and J. A. Buck, “Optical design and simulation for dual-wavelength LEDs in solid state lighting,” presented at the OSA Conference on Lasers and Electro-Optics, Long Beach, California, May 2006, paper CTuE5

A. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley, 1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Structure of a dual wavelength LED; (b) a tunnel junction.

Fig. 2
Fig. 2

Refractive index plots: (a) GaN, (b)  Al 0.3 Ga 0.7 N , and (c)  In 0.1 Ga 0.9 N .

Fig. 3
Fig. 3

470 / 530 LEDs: light extraction efficiency as a function of the refractive index or the absorption coefficient of InGaN active region with other material parameters in Table 1 unchanged. (a) Top emitter at 470 nm peak wavelength; light extraction efficiency versus the refractive index variation, solid line for optical ray tracing results, and dashed line for estimation from Ref. [11]. (b) Top emitter; light extraction efficiency versus the absorption coefficient. (c) Bottom LED at 530 nm peak emission; light extraction efficiency versus the refractive index variation. (d) Bottom LED light extraction efficiency versus the absorption coefficient

Tables (2)

Tables Icon

Table 1 Refractive Indices and Absorption Coefficients of GaN, InGaN, and AlGaN for 470 / 530 nm Simulations

Tables Icon

Table 2 Refractive Indices and Absorption Coefficients of GaN, InGaN, and AlGaN for 400 / 460 nm Simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) 2 = a ( x ) ( h c λ E g ) 2 [ 2 ( 1 + h c λ E g ) 1 / 2 ( 1 h c λ E g ) 1 / 2 ] + b ( x ) .
E g ( x ) = 6.28 x + 3.42 ( 1 x ) 1.3 x ( 1 x ) .
a ( x ) = 3.17 x + 9.98 , b ( x ) = 2.20 x + 2.66.
E g ( x ) = 1.9 x + 3.4 ( 1 x ) 1.0 x ( 1 x ) ,
a ( x ) = 53.57 x + 9.31 ( 1 x ) , b ( x ) = 9.19 x + 3.03 ( 1 x ) .
λ p = 1240 1.89 x + 3.42 ( 1 x ) 3.8 x ( 1 x ) + E 1 e + E 1 h nm ,
ρ ( λ ) = 1 2 π σ exp [ ( λ λ p ) 2 2 σ 2 ] ,

Metrics