Abstract

Comparative research on fine spectrum analysis techniques (static and dynamic) has been carried out. The advantages of the dynamic method for fine spectrum study of heterolaser radiation as a method of study of the spectrum change under ultrasonic strain have been shown. An approach to fine dynamic spectrum analysis has been developed, and the treatment of experimental data on the spectrum dynamics of the InGaAsP/InP structures in the presence of surface acoustic waves has been carried out. Thus an appreciable contribution of the acousto-optic interaction (comparable with the acousto- electronic interaction), resulting in time modulation of resonance frequencies of the heterolaser optical resonator, was found. The second, no less important, result of the investigation consists of the finding of the possibility to determine phase shifts between acousto-optic and the acousto-electronic interactions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
    [CrossRef]
  2. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
    [CrossRef]
  3. S. Luryi and M. Gouzman, “Feasibility of an optical frequency modulation system for free-space optical communications,” Int. J. High Speed Electron. Syst. 16, 559-566 (2006).
    [CrossRef]
  4. N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
    [CrossRef]
  5. S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
    [CrossRef]
  6. L. A. Kulakova and I. S. Tarasov, “Heterolaser frequency tuning under the action of ultrasonic waves,” JETP Lett. 78, 67-71 (2003).
    [CrossRef]
  7. L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
    [CrossRef]

2007 (1)

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

2006 (2)

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

S. Luryi and M. Gouzman, “Feasibility of an optical frequency modulation system for free-space optical communications,” Int. J. High Speed Electron. Syst. 16, 559-566 (2006).
[CrossRef]

2003 (1)

L. A. Kulakova and I. S. Tarasov, “Heterolaser frequency tuning under the action of ultrasonic waves,” JETP Lett. 78, 67-71 (2003).
[CrossRef]

2002 (1)

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

2000 (1)

L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
[CrossRef]

1997 (1)

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Belenky, G.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Bruno, J.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Capasso, F.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Cho, A. Y.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Colombelli, R.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Gmachl, C.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Gouzman, M.

S. Luryi and M. Gouzman, “Feasibility of an optical frequency modulation system for free-space optical communications,” Int. J. High Speed Electron. Syst. 16, 559-566 (2006).
[CrossRef]

Il'in, Yu. V.

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Khalfin, V. B.

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Kisin, M. V.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Kulakova, L. A.

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

L. A. Kulakova and I. S. Tarasov, “Heterolaser frequency tuning under the action of ultrasonic waves,” JETP Lett. 78, 67-71 (2003).
[CrossRef]

L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
[CrossRef]

Leshko, A. Yu.

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Luryi, S.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

S. Luryi and M. Gouzman, “Feasibility of an optical frequency modulation system for free-space optical communications,” Int. J. High Speed Electron. Syst. 16, 559-566 (2006).
[CrossRef]

Lyutetski, A. V.

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Matveev, B. A.

L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
[CrossRef]

Melekh, B. T.

L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
[CrossRef]

Pikhtin, N. A.

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Sergent, A. M.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Shuvalova, N. V.

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Sivco, D. L.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Slipchenko, S. O.

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

Straub, A.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Suchalkin, S.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Tarasov, I. S.

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

L. A. Kulakova and I. S. Tarasov, “Heterolaser frequency tuning under the action of ultrasonic waves,” JETP Lett. 78, 67-71 (2003).
[CrossRef]

Tober, R.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Towner, F. J.

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. Suchalkin, M. V. Kisin, S. Luryi, G. Belenky, J. Bruno, F. J. Towner, and R. Tober, “Widely tunable type-II interband cascade laser,” Appl. Phys. Lett. 88031103 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. L. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed-feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quantum Electron. 38, 569-581 (2002).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

S. Luryi and M. Gouzman, “Feasibility of an optical frequency modulation system for free-space optical communications,” Int. J. High Speed Electron. Syst. 16, 559-566 (2006).
[CrossRef]

J. Exp. Theor. Phys. (1)

L. A. Kulakova, N. A. Pikhtin, S. O. Slipchenko, and I. S. Tarasov, “Controlling the radiation spectrum of quantum-well heterostructure lasers by ultrasonic strain,” J. Exp. Theor. Phys. 104, 689-695 (2007).
[CrossRef]

J. Non-Cryst. Solids (1)

L. A. Kulakova, B. A. Matveev, and B. T. Melekh, “Si-Te acousto-optic modulator for 1.7-10.6 mkm IR region,” J. Non-Cryst. Solids 266-269, 969-972 (2000).
[CrossRef]

JETP Lett. (1)

L. A. Kulakova and I. S. Tarasov, “Heterolaser frequency tuning under the action of ultrasonic waves,” JETP Lett. 78, 67-71 (2003).
[CrossRef]

Tech. Phys. Lett. (1)

N. A. Pikhtin, A. Yu. Leshko, A. V. Lyutetski, V. B. Khalfin, N. V. Shuvalova, Yu. V. Il'in, and I. S. Tarasov, “Two-section InGaAsP/InP Fabry-Perot laser with a 12 nm tuning range,” Tech. Phys. Lett. 23, 214-216 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral distribution of the laser emission intensity. Points, experiment with the SAW switched off (curve 1) and on (curve 2); lines, theoretical calculation: curve 3, equilibrium spectral structure; curve 4, structure arising from acousto-electronic interaction ( L e = 4.5 Å ); curve 5, structure arising from both acousto-optic ( L R = 1 Å ) and acousto-electronic ( L e = 1.2 Å ) interactions.

Fig. 2
Fig. 2

Dependence of the resonant wavelength change on the FPE rotation angle: in (a) the numbers on the abscissa axis (0, 1, 2) indicate the positions of the angular interference orders; (b) region of small deviations from the normal incidence.

Fig. 3
Fig. 3

Dispersive curves of the FPE ( L 0 = 0.6 mm , λ 0 = 1.48 μm ) obtained for the In Ga As P / In P heterolaser emission at different operating currents: 1 I op 1.4 th , 2 I op 1.6 I th . In the inset on the abscissa axis Δ λ is calculated according to Eq. (10).

Fig. 4
Fig. 4

Spectral distribution of the heterolaser emission intensity, obtained by the FPE: curve 1, experiment; curves 2 and 3, calculation of the laser curve gain and the generated spectrum, respectively.

Fig. 5
Fig. 5

(a) Oscillograms ( I op 1.7 I th ): top beam, the operating current pulse; bottom beam, laser emission pulse (the FPE output signal); 1, the sound is absent; 2, in the presence of the SAW ( f = 10.75 MHz ) for Δ λ = 0 . (b) Dependences of the radiation intensity on time, calculated according Eqs. (1, 2, 3) with parameters (11) for the equilibrium case (curve 1) and in the presence of the SAW at L e = 1.2 Å , L R = 1 Å (curve 2) for Δ λ = 0 . The data in (a) and (b) are presented on the same scale.

Fig. 6
Fig. 6

(a) Oscillograms ( I op 1.7 I th ): top beam, operating current pulse; bottom beam, laser emission pulse (the FPE output signal); 1, the sound is absent; 2, in the presence of the SAW ( f = 10.75 MHz ) for Δ λ = 1 Å . (b) Dependences of the radiation intensity on time, calculated according to Eqs. (1, 2, 3) with parameters (11) for the equilibrium case (curve 1) and in the presence of the SAW at L e = 1.2 Å , L R = 1 Å (curve 2) for Δ λ = 1 Å . The data in (a) and (b)  are presented on the same scale.

Fig. 7
Fig. 7

(a) Oscillograms ( I op 1.7 I th ): top beam, operating current pulse; bottom beam, laser emission pulse (the FPE output signal); 1, the sound is absent; 2, in the presence of the SAW ( f = 10.75 MHz ) for Δ λ = 1 Å . (b) Dependences of the radiation intensity on time, calculated according to Eqs. (1, 2, 3) with parameters (11) for the equilibrium case (curve 1) and in the presence of the SAW at L e = 1.2 Å , L R = 1 Å (curve 2) for Δ λ = 1 Å . The data in (a) and (b)  are presented on the same scale.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ λ R k / λ R k = 1 / 2 n i 2 p i j S j 0 ,
Δ λ m / λ m = λ m Λ j S j / hc ,
I ( Δ λ , t ) = I e × I R ,
I R ( Δ λ , t ) = k exp ( 2 ( Δ λ k Δ λ R + L R Sin Ω t ) 2 w R 2 ) ,
I e ( Δ λ , t ) = I 0 + A 1 exp ( 2 ( Δ λ Δ λ m 1 + L e Sin Ω t ) 2 w 1 2 ) + A 2 exp ( 2 ( Δ λ Δ λ m 2 + L e Sin Ω t ) 2 w 2 2 ) ,
I ¯ ( Δ λ ) = 1 2 π π π I e ( Δ λ , Ω t ) I R ( Δ λ , Ω t ) d ( Ω t ) .
2 L 0 λ k = k ,
2 L 0 ( 1 + 1 / 2 θ in 2 ) / λ k = k + n .
θ in = ± n λ k / L 0 .
Δ λ k = λ k θ i 2 / 2.
I 0 = 1 mV , A 1 = 325 mV , Δ λ m 1 = 0.35 Å , w 1 = 3.73 Å , A 2 = 0 , w R = 1 Å , k = 1 , 0 , 1.

Metrics