Abstract

A sensitive spectrometer has been developed for observing the hydroxyl airglow in the polar region. This spectrometer is designed to acquire spectra of the Meinel OH 8-4 band, which has the advantage of being relatively free of contamination from auroral emissions. The spectrometer consists of a fast optical system, a transmission plane grating, and a cooled CCD image sensor. The spectrometer can acquire spectra between 900 and 987nm, from which the OH rotational temperature can be derived with an accuracy of ±1.9 to 2.5K for a 1min exposure. The spectrometer specifications and initial measurement results for the OH rotational temperature and intensity at Syowa Station (69.0°S, 39.6°E) in Antarctica are presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555-564 (1950).
    [CrossRef]
  2. D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988).
    [CrossRef]
  3. D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950).
    [CrossRef]
  4. W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
    [CrossRef]
  5. G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
    [CrossRef]
  6. V. I. Krassovsky, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. (C.N.R.S.) 28, 739-746 (1972).
  7. H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
    [CrossRef]
  8. I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
    [CrossRef]
  9. K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).
  10. W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004).
    [CrossRef]
  11. L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
    [CrossRef]
  12. A. Vallance Jones, “Auroral spectroscopy,” Space Sci. Rev. 11, 776-826 (1971).
  13. H. Suzuki, “Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow,” Polar Sci. 2(1), 1-8 (2008).
    [CrossRef]
  14. D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979).
    [CrossRef]
  15. F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150-188 (1974).
    [CrossRef]
  16. S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
    [CrossRef]
  17. L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
    [CrossRef]
  18. T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
    [CrossRef]
  19. P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
    [CrossRef]

2008 (1)

H. Suzuki, “Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow,” Polar Sci. 2(1), 1-8 (2008).
[CrossRef]

2004 (1)

W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004).
[CrossRef]

2003 (1)

P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
[CrossRef]

2002 (2)

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

1995 (1)

I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
[CrossRef]

1993 (1)

W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
[CrossRef]

1988 (1)

D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988).
[CrossRef]

1986 (1)

S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
[CrossRef]

1983 (1)

L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
[CrossRef]

1982 (1)

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

1979 (1)

D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979).
[CrossRef]

1974 (2)

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150-188 (1974).
[CrossRef]

H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
[CrossRef]

1972 (2)

G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
[CrossRef]

V. I. Krassovsky, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. (C.N.R.S.) 28, 739-746 (1972).

1971 (1)

A. Vallance Jones, “Auroral spectroscopy,” Space Sci. Rev. 11, 776-826 (1971).

1950 (2)

D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950).
[CrossRef]

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555-564 (1950).
[CrossRef]

Baker, D. J.

D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988).
[CrossRef]

Bates, D. R.

D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950).
[CrossRef]

Bond, F. R.

L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
[CrossRef]

Boyd, J. S.

L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
[CrossRef]

Burns, G. B.

W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004).
[CrossRef]

Clark, T. A.

D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979).
[CrossRef]

Clemesha, B. R.

H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
[CrossRef]

Deehr, C. S.

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

Dick, K. K.

G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
[CrossRef]

Espy, P. J.

P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
[CrossRef]

W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
[CrossRef]

Feldman, P. D.

G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
[CrossRef]

French, W. J. R.

W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004).
[CrossRef]

Gentry, B.

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

Giver, L. P.

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

Hammond, M. R.

W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
[CrossRef]

Hibbins, R. E.

P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
[CrossRef]

Jones, A. Vallance

A. Vallance Jones, “Auroral spectroscopy,” Space Sci. Rev. 11, 776-826 (1971).

Jones, G. O. L.

P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
[CrossRef]

Kawahara, T. D.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Kendall, D. J. R.

D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979).
[CrossRef]

Kitahara, T.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Kobayashi, F.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Krassovsky, V. I.

V. I. Krassovsky, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. (C.N.R.S.) 28, 739-746 (1972).

Kruger, D. A.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Langhoff, S. R.

S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
[CrossRef]

McEwen, D. J.

I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
[CrossRef]

Meinel, A. B.

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555-564 (1950).
[CrossRef]

Mies, F. H.

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150-188 (1974).
[CrossRef]

Nicolet, M.

D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950).
[CrossRef]

Nielsen, K. P.

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

Nomura, A.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Oznovich, I.

I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
[CrossRef]

Pendleton, W. R.

W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
[CrossRef]

Raustein, E.

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

Rosmus, P.

S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
[CrossRef]

Sahai, Y.

H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
[CrossRef]

Saito, Y.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Schwemmer, G.

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

She, C. Y.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Sigernes, F.

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

Sivjee, G. G.

I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
[CrossRef]

G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
[CrossRef]

Stair, A. T.

D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988).
[CrossRef]

Stubbs, L. C.

L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
[CrossRef]

Suzuki, H.

H. Suzuki, “Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow,” Polar Sci. 2(1), 1-8 (2008).
[CrossRef]

Takahashi, H.

H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
[CrossRef]

Tsutsumi, M.

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

Werner, H.-J.

S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
[CrossRef]

Wilkerson, T. D.

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

Ann. Geophys. (C.N.R.S.) (1)

V. I. Krassovsky, “Infrasonic variations of OH emission in the upper atmosphere,” Ann. Geophys. (C.N.R.S.) 28, 739-746 (1972).

Astrophys. J. (1)

A. B. Meinel, “OH emission bands in the spectrum of the night sky,” Astrophys. J. 111, 555-564 (1950).
[CrossRef]

Geophys. Res. Lett. (2)

T. D. Kawahara, T. Kitahara, F. Kobayashi, Y. Saito, A. Nomura, C. Y. She, D. A. Kruger, and M. Tsutsumi, “Winter time mesopause temperature observed by lidar measurements over Syowa station (69°S,39°E), Antarctica,” Geophys. Res. Lett. 29, 1709-1721 (2002).
[CrossRef]

P. J. Espy, R. E. Hibbins, and G. O. L. Jones, “Rapid, large-scale temperature changes in the polar mesosphere and their relationship to meridional flows,” Geophys. Res. Lett. 30, 1240 (2003).
[CrossRef]

J. Atmos. Sol.-Terr. Phys. (1)

W. J. R. French and G. B. Burns, “The influence of large-scale oscillations on long-term trend assessment in hydroxyl temperatures over Davis, Antarctica,” J. Atmos. Sol.-Terr. Phys. 66, 493-506 (2004).
[CrossRef]

J. Geophys. Res. (2)

D. R. Bates and M. Nicolet, “The photochemistry of atmospheric water vapor,” J. Geophys. Res. 55, 301-327 (1950).
[CrossRef]

W. R. Pendleton, Jr., P. J. Espy, and M. R. Hammond, “Evidence for non-local-thermodynamic-equilibrium rotation in the OH nightglow,” J. Geophys. Res. 98(A7), 11567-11579 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

F. H. Mies, “Calculated vibrational transition probabilities of OH(X2Π),” J. Mol. Spectrosc. 53, 150-188 (1974).
[CrossRef]

S. R. Langhoff, H.-J. Werner, and P. Rosmus, “Theoretical transition probabilities for the OH Meinel System,” J. Mol. Spectrosc. 118, 507-529 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

L. P. Giver, B. Gentry, G. Schwemmer, and T. D. Wilkerson, “Water absorption lines, 931-961 nm: selected intensities, N2-collision-broadening coefficients, and pressure shifts in air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423-436 (1982).
[CrossRef]

D. J. R. Kendall and T. A. Clark, “The pure rotational atmospheric lines of hydroxyl,” J. Quant. Spectrosc. Radiat. Transfer 21, 511-526 (1979).
[CrossRef]

Phys. Chem. Earth (1)

K. P. Nielsen, F. Sigernes, E. Raustein, and C. S. Deehr, “The 20-year change of the Svalbard OH-temperatures,” Phys. Chem. Earth 27, 555-561 (2002).

Phys. Scr. (1)

D. J. Baker and A. T. Stair, Jr., “Rocket measurements of the altitude distribution of the hydroxyl emission,” Phys. Scr. 37, 611-622 (1988).
[CrossRef]

Planet. Space Sci. (4)

G. G. Sivjee, K. K. Dick, and P. D. Feldman, “Temporal variations in night-time hydroxyl rotational temperature,” Planet. Space Sci. 20, 261-269 (1972).
[CrossRef]

L. C. Stubbs, J. S. Boyd, and F. R. Bond, “Measurement of the OH rotational temperatures at Mawson, East Antarctica,” Planet. Space Sci. 31, 923-932 (1983).
[CrossRef]

H. Takahashi, B. R. Clemesha, and Y. Sahai, “Nightglow OH (8,3) band intensities and rotational temperature at 23°S,” Planet. Space Sci. 22, 1323-1329 (1974).
[CrossRef]

I. Oznovich, D. J. McEwen, and G. G. Sivjee, “Temperature and airglow brightness oscillations in the polar mesosphere and lower thermosphere,” Planet. Space Sci. 43, 1121-1130(1995).
[CrossRef]

Polar Sci. (1)

H. Suzuki, “Atmospheric gravity waves identified by ground-based observations of the intensity and rotational temperature of OH airglow,” Polar Sci. 2(1), 1-8 (2008).
[CrossRef]

Space Sci. Rev. (1)

A. Vallance Jones, “Auroral spectroscopy,” Space Sci. Rev. 11, 776-826 (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Comparison of spectra of the OH 6-2 and OH 8-4 bands obtained simultaneously on 3 May 2008 in Syowa Station. Dotted and solid spectra are obtained at 18:15 UT and 21:57 UT, respectively. The exposure time was 1 min for both spectrometers. Each intensity is normalized by counts of the Q branch during quiet auroral conditions (18:15 UT).

Fig. 2
Fig. 2

Width and position of the slits on the slit plate.

Fig. 3
Fig. 3

Transmittance of the long-pass filter to cut second-order diffraction.

Fig. 4
Fig. 4

Optical system of the spectrometer.

Fig. 5
Fig. 5

Raw spectral image of the neon lamp.

Fig. 6
Fig. 6

Position shift of a spectrum versus Y position.

Fig. 7
Fig. 7

Concept of the spectral shift correction.

Fig. 8
Fig. 8

Spectrum of the neon lamp extracted from the corrected image.

Fig. 9
Fig. 9

Instrumental function of the spectrometer.

Fig. 10
Fig. 10

Relative sensitivity of the spectrometer. The sensitivity at position of rotational line P 1 ( 2 ) ( 944 nm ) is assumed to be 1. The uncertainty is estimated to be less than ± 1 % and is indicated by the dotted curves.

Fig. 11
Fig. 11

Typical spectrum of the OH 8-4 band obtained with a 1 min exposure. Spectra (a) and (b) were obtained under quiet and active auroral conditions, respectively.

Fig. 12
Fig. 12

Fitting parameters used to determine the intensity of rotational lines.

Fig. 13
Fig. 13

Relationship between the rotational temperature and the ratio of the rotational lines of the OH 8-4 band.

Fig. 14
Fig. 14

Intensities of rotational lines and auroral emission and rotational temperature observed at Syowa Station on 6 and 7 May 2008. The error bars show the typical 1 σ standard error.

Fig. 15
Fig. 15

Mean hourly rotational temperature observed by the OH spectrometer at Syowa Station from 2 May to 7 May 2008. The error bars indicate the standard deviation of fluctuations within the averaging time (1 h).

Tables (1)

Tables Icon

Table 1 Random Error in Rotational Temperature Measurement for a Typical Signal-to-Noise Ratio ( s / n = 100 ) on a Clear Day for 1 min Exposure

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F obs ( λ ) = + F ( λ λ ) S ( λ ) d λ .
S ( λ ) = δ ( λ λ 0 ) ,
F obs ( λ ) = F ( λ λ 0 ) .
I ( x ) = τ ( S ( x ) L ( x ) + D ) + I 0 ,
S ( x ) = [ I ( x ) + I 0 τ D ] / L ( x ) .
I ( J , i , ν J , i , ν ) = N ν A ¯ ( J , i , ν J , i , ν ) 2 ( 2 J + 1 ) Q ν ( T rot ) exp [ E i ν ( J ) k B T rot ] ,
I 1 I 2 = A ¯ 1 A ¯ 2 2 J 1 + 1 2 J 2 + 1 exp ( E 2 E 1 k B T rot ) .
T rot = E 2 E 1 k B log [ I 1 A ¯ 2 ( 2 J 2 + 1 ) I 2 A ¯ 1 ( 2 J 1 + 1 ) ] .

Metrics