Abstract

We report on a scanning total internal reflection fluorescence microscope with improved imaging properties. In the illumination system of the developed microscope, radial polarization is employed to obtain the point spread function with a single and circular peak. By using radial polarization, the confocal detection method, which can reduce the background noise of the image, is effectively applicable in the optical system. The observed image of a fluorescent particle with the size of 200nm reveals the improvement of the imaging properties.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005).
    [CrossRef] [PubMed]
  2. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection,” Opt. Lett. 28, 1930-1932 (2003).
    [CrossRef] [PubMed]
  3. J. W. M. Chon and M. Gu, “Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation,” Appl. Opt. 43, 1063-1071 (2004).
    [CrossRef] [PubMed]
  4. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381-1386 (1998).
    [CrossRef]
  5. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11-15 (2000).
    [CrossRef]
  6. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt. 46, 4985-4990 (2007).
    [CrossRef] [PubMed]
  7. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  8. D. G. Hall, “Vector-beam solutions of Maxwell's wave equation,” Opt. Lett. 21, 9-11 (1996).
    [CrossRef] [PubMed]
  9. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998).
    [CrossRef]
  10. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24, 1543-1545 (1999).
    [CrossRef]
  11. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
    [CrossRef]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
    [CrossRef] [PubMed]
  13. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
    [CrossRef]
  14. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
    [CrossRef]
  15. K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).
  16. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
    [CrossRef]
  17. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000).
    [CrossRef] [PubMed]
  18. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490-497 (2001).
    [PubMed]
  19. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [PubMed]
  20. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322-4327 (2004).
    [CrossRef] [PubMed]
  21. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821-6827 (2005).
    [CrossRef] [PubMed]

2008 (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

2007 (1)

2006 (1)

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

2005 (3)

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
[CrossRef]

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13, 6821-6827 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

2001 (2)

D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490-497 (2001).
[PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

2000 (2)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000).
[CrossRef] [PubMed]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11-15 (2000).
[CrossRef]

1999 (1)

1998 (2)

1996 (1)

1995 (1)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
[CrossRef]

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

Biss, D. P.

Brown, T. G.

Bu, J.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Bullen, C.

Burge, R. E.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Chon, J. W. M.

Choudhury, A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[PubMed]

Gan, X.

Greene, P. L.

Gu, M.

Hall, D. G.

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
[CrossRef]

Horiguchi, N.

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Jia, B.

Kano, H.

Kawakami, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Kawata, S.

Knoll, W.

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11-15 (2000).
[CrossRef]

Kozawa, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[PubMed]

Low, D. K. Y.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Masuda, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
[CrossRef]

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Mizuguchi, S.

Moh, K. J.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Mulvaney, P.

Nose, T.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Saghafi, S.

Sato, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
[CrossRef]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Schneckenburger, H.

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Watanabe, K.

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87(2000).
[CrossRef] [PubMed]

Yuan, X. C.

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Appl. Opt. (3)

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

K. J. Moh, X. C. Yuan, J. Bu, D. K. Y. Low, and R. E. Burge, “Direct noninterference cylindrical vector beam generation applied in the femtosecond regime,” Appl. Phys. Lett. 89, 251114 (2006).

Curr. Opin. Biotechnol. (1)

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol. 16, 13-18 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitaiton beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44, L1066-L1068 (2005).
[CrossRef]

Opt. Commun. (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun. 182, 11-15 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Rev. (1)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polarization converting device using a nematic liquid crystal cell,” Opt. Rev. 2, 211-216 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[PubMed]

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng. 32, 259-264 (2004).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Model of the two-photon excited TIRF microscope. An annular beam is focused by an objective lens to excite a fluorescent sample.

Fig. 2
Fig. 2

Squared intensity distribution of the electric field produced on the substrate surface by using (a) linear and (b) radial polarization for the illumination light.

Fig. 3
Fig. 3

Calculated PSFs by assuming the use of the confocal detection method. Images (a), (b), and (c) are the distributions on the substrate surface assuming a numerical aperture of 1.01–1.4, 1.01–1.1, and 1.3–1.4, respectively. The line plots in (d), (e), and (f) are the profiles along the broken lines in (a), (b), and (c), respectively. The line plots in (g), (h), and (i) are the profiles along the optical axis from the substrate surface by assuming the same conditions used in (a), (b), and (c), respectively.

Fig. 4
Fig. 4

Optical apparatus of the developed confocal two-photon excited TIRF microscope.

Fig. 5
Fig. 5

Device for converting linear polarization to radial polarization. The π-step phase shifter converts linear polarization to dissymmetric polarization. The liquid crystal cell with a parallel rubbing pattern on one side of the cell surface and a concentric rubbing pattern on the other side converts dissymmetric polarization to radial polarization.

Fig. 6
Fig. 6

Observed images of a fluorescent particle with (a) radial and (b) linear polarization.

Metrics